Loading…
It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility
The striatum as the main entry nucleus of the basal ganglia is long known to be critical for motor control. It integrates information from multiple cortical areas, thalamic and midbrain nuclei to refine and control motion. By tackling this incredible variety of input signals, increasing evidences sh...
Saved in:
Published in: | Neurochemistry international 2019-03, Vol.124, p.200-214 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The striatum as the main entry nucleus of the basal ganglia is long known to be critical for motor control. It integrates information from multiple cortical areas, thalamic and midbrain nuclei to refine and control motion. By tackling this incredible variety of input signals, increasing evidences showed a pivotal role, particularly of the dorsal striatum, in executive functions. The complexity of the dorsal striatum (DS) in its compartmentalization and in the nature and origin of its afferent connections, makes it a critical hub controlling dynamics of motor learning and behavioral or cognitive flexibility. The present review summarizes findings from recent studies that utilize optogenetics with complementary technologies including electrophysiology, activity imaging and tracing methods in rodents to elucidate the functioning and role of discrete regions and specific pathways of the DS in behavioral flexibility, with an emphasis on the processes leading to initial action sequence or serial order learning and reversal learning. |
---|---|
ISSN: | 0197-0186 1872-9754 |
DOI: | 10.1016/j.neuint.2019.01.009 |