Loading…

Detection of Extended-Spectrum β‑Lactamase-Producing Escherichia coli Using Infrared Microscopy and Machine-Learning Algorithms

The spread of multidrug resistant bacteria has become a global concern. One of the most important and emergent classes of multidrug-resistant bacteria is extended-spectrum β-lactamase-producing bacteria (ESBL-positive = ESBL+). Due to widespread and continuous evolution of ESBL-producing bacteria, t...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2019-02, Vol.91 (3), p.2525-2530
Main Authors: Sharaha, Uraib, Rodriguez-Diaz, Eladio, Sagi, Orli, Riesenberg, Klaris, Lapidot, Itshak, Segal, Yoram, Bigio, Irving J, Huleihel, Mahmoud, Salman, Ahmad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a376t-e11b92d25f489293801318c1be75b8eca43816891014703d52ba6d07bc3a83b3
cites cdi_FETCH-LOGICAL-a376t-e11b92d25f489293801318c1be75b8eca43816891014703d52ba6d07bc3a83b3
container_end_page 2530
container_issue 3
container_start_page 2525
container_title Analytical chemistry (Washington)
container_volume 91
creator Sharaha, Uraib
Rodriguez-Diaz, Eladio
Sagi, Orli
Riesenberg, Klaris
Lapidot, Itshak
Segal, Yoram
Bigio, Irving J
Huleihel, Mahmoud
Salman, Ahmad
description The spread of multidrug resistant bacteria has become a global concern. One of the most important and emergent classes of multidrug-resistant bacteria is extended-spectrum β-lactamase-producing bacteria (ESBL-positive = ESBL+). Due to widespread and continuous evolution of ESBL-producing bacteria, they become increasingly resistant to many of the commonly used antibiotics, leading to an increase in the mortality associated with resulting infections. Timely detection of ESBL-producing bacteria and rapid determination of their susceptibility to appropriate antibiotics can reduce the spread of these bacteria and the consequent complications. Routine methods used for the detection of ESBL-producing bacteria are time-consuming, requiring at least 48 h to obtain results. In this study, we evaluated the potential of infrared spectroscopic microscopy, combined with multivariate analysis for rapid detection of ESBL-producing Escherichia coli (E. coli) isolated from urinary-tract infection (UTI) samples. Our measurements were conducted on 837 samples of uropathogenic E. coli (UPEC), including 268 ESBL+ and 569 ESBL-negative (ESBL–) samples. All samples were obtained from bacterial colonies after 24 h culture (first culture) from midstream patients’ urine. Our results revealed that it is possible to detect ESBL-producing bacteria, with a 97% success rate, 99% sensitivity, and 94% specificity for the tested samples, in a time span of few minutes following the first culture.
doi_str_mv 10.1021/acs.analchem.8b05497
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179416155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179416155</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-e11b92d25f489293801318c1be75b8eca43816891014703d52ba6d07bc3a83b3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhDRCKxIVLlhk7Tpxj1S5QaRFIlHM0cZyuq8Re7ESiN8Qb8Co8CA_Bk-Cw2x44cBrN6Pv_0czP2HOENQLH16TjmhwNemfGtWpBFnX1gK1QcshLpfhDtgIAkfMK4IQ9ifEGABGwfMxOBJQKleAr9v3CTEZP1rvM99nm62RcZ7r80z4Nwzxmv37-_vZjS3qikaLJPwbfzdq662wT0-Jg9c5Spv1gs89xGV-6PlAwXfbe6uCj9vvbjFxqKZHO5FtDwS3g2XDtg512Y3zKHvU0RPPsWE_Z1ZvN1fm7fPvh7eX52TYnUZVTbhDbmndc9oWqeS0UoEClsTWVbJXRVAiFparTiUUFopO8pbKDqtWClGjFKXt1sN0H_2U2cWpGG7UZBnLGz7HhWNUFlihlQl_-g974OaRf_6UUcimhSFRxoJZDYzB9sw92pHDbIDRLRE2KqLmLqDlGlGQvjuZzO5ruXnSXSQLgACzy-8X_9fwDgVyiaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178125504</pqid></control><display><type>article</type><title>Detection of Extended-Spectrum β‑Lactamase-Producing Escherichia coli Using Infrared Microscopy and Machine-Learning Algorithms</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sharaha, Uraib ; Rodriguez-Diaz, Eladio ; Sagi, Orli ; Riesenberg, Klaris ; Lapidot, Itshak ; Segal, Yoram ; Bigio, Irving J ; Huleihel, Mahmoud ; Salman, Ahmad</creator><creatorcontrib>Sharaha, Uraib ; Rodriguez-Diaz, Eladio ; Sagi, Orli ; Riesenberg, Klaris ; Lapidot, Itshak ; Segal, Yoram ; Bigio, Irving J ; Huleihel, Mahmoud ; Salman, Ahmad</creatorcontrib><description>The spread of multidrug resistant bacteria has become a global concern. One of the most important and emergent classes of multidrug-resistant bacteria is extended-spectrum β-lactamase-producing bacteria (ESBL-positive = ESBL+). Due to widespread and continuous evolution of ESBL-producing bacteria, they become increasingly resistant to many of the commonly used antibiotics, leading to an increase in the mortality associated with resulting infections. Timely detection of ESBL-producing bacteria and rapid determination of their susceptibility to appropriate antibiotics can reduce the spread of these bacteria and the consequent complications. Routine methods used for the detection of ESBL-producing bacteria are time-consuming, requiring at least 48 h to obtain results. In this study, we evaluated the potential of infrared spectroscopic microscopy, combined with multivariate analysis for rapid detection of ESBL-producing Escherichia coli (E. coli) isolated from urinary-tract infection (UTI) samples. Our measurements were conducted on 837 samples of uropathogenic E. coli (UPEC), including 268 ESBL+ and 569 ESBL-negative (ESBL–) samples. All samples were obtained from bacterial colonies after 24 h culture (first culture) from midstream patients’ urine. Our results revealed that it is possible to detect ESBL-producing bacteria, with a 97% success rate, 99% sensitivity, and 94% specificity for the tested samples, in a time span of few minutes following the first culture.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b05497</identifier><identifier>PMID: 30681832</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Antibiotics ; Bacteria ; Chemistry ; Complications ; Culture ; E coli ; Escherichia coli ; Infections ; Infrared analysis ; Learning algorithms ; Machine learning ; Microscopy ; Multidrug resistance ; Multidrug resistant organisms ; Multivariate analysis ; Urine</subject><ispartof>Analytical chemistry (Washington), 2019-02, Vol.91 (3), p.2525-2530</ispartof><rights>Copyright American Chemical Society Feb 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-e11b92d25f489293801318c1be75b8eca43816891014703d52ba6d07bc3a83b3</citedby><cites>FETCH-LOGICAL-a376t-e11b92d25f489293801318c1be75b8eca43816891014703d52ba6d07bc3a83b3</cites><orcidid>0000-0003-4953-8648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30681832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharaha, Uraib</creatorcontrib><creatorcontrib>Rodriguez-Diaz, Eladio</creatorcontrib><creatorcontrib>Sagi, Orli</creatorcontrib><creatorcontrib>Riesenberg, Klaris</creatorcontrib><creatorcontrib>Lapidot, Itshak</creatorcontrib><creatorcontrib>Segal, Yoram</creatorcontrib><creatorcontrib>Bigio, Irving J</creatorcontrib><creatorcontrib>Huleihel, Mahmoud</creatorcontrib><creatorcontrib>Salman, Ahmad</creatorcontrib><title>Detection of Extended-Spectrum β‑Lactamase-Producing Escherichia coli Using Infrared Microscopy and Machine-Learning Algorithms</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The spread of multidrug resistant bacteria has become a global concern. One of the most important and emergent classes of multidrug-resistant bacteria is extended-spectrum β-lactamase-producing bacteria (ESBL-positive = ESBL+). Due to widespread and continuous evolution of ESBL-producing bacteria, they become increasingly resistant to many of the commonly used antibiotics, leading to an increase in the mortality associated with resulting infections. Timely detection of ESBL-producing bacteria and rapid determination of their susceptibility to appropriate antibiotics can reduce the spread of these bacteria and the consequent complications. Routine methods used for the detection of ESBL-producing bacteria are time-consuming, requiring at least 48 h to obtain results. In this study, we evaluated the potential of infrared spectroscopic microscopy, combined with multivariate analysis for rapid detection of ESBL-producing Escherichia coli (E. coli) isolated from urinary-tract infection (UTI) samples. Our measurements were conducted on 837 samples of uropathogenic E. coli (UPEC), including 268 ESBL+ and 569 ESBL-negative (ESBL–) samples. All samples were obtained from bacterial colonies after 24 h culture (first culture) from midstream patients’ urine. Our results revealed that it is possible to detect ESBL-producing bacteria, with a 97% success rate, 99% sensitivity, and 94% specificity for the tested samples, in a time span of few minutes following the first culture.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Chemistry</subject><subject>Complications</subject><subject>Culture</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Infections</subject><subject>Infrared analysis</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Microscopy</subject><subject>Multidrug resistance</subject><subject>Multidrug resistant organisms</subject><subject>Multivariate analysis</subject><subject>Urine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EokvhDRCKxIVLlhk7Tpxj1S5QaRFIlHM0cZyuq8Re7ESiN8Qb8Co8CA_Bk-Cw2x44cBrN6Pv_0czP2HOENQLH16TjmhwNemfGtWpBFnX1gK1QcshLpfhDtgIAkfMK4IQ9ifEGABGwfMxOBJQKleAr9v3CTEZP1rvM99nm62RcZ7r80z4Nwzxmv37-_vZjS3qikaLJPwbfzdq662wT0-Jg9c5Spv1gs89xGV-6PlAwXfbe6uCj9vvbjFxqKZHO5FtDwS3g2XDtg512Y3zKHvU0RPPsWE_Z1ZvN1fm7fPvh7eX52TYnUZVTbhDbmndc9oWqeS0UoEClsTWVbJXRVAiFparTiUUFopO8pbKDqtWClGjFKXt1sN0H_2U2cWpGG7UZBnLGz7HhWNUFlihlQl_-g974OaRf_6UUcimhSFRxoJZDYzB9sw92pHDbIDRLRE2KqLmLqDlGlGQvjuZzO5ruXnSXSQLgACzy-8X_9fwDgVyiaQ</recordid><startdate>20190205</startdate><enddate>20190205</enddate><creator>Sharaha, Uraib</creator><creator>Rodriguez-Diaz, Eladio</creator><creator>Sagi, Orli</creator><creator>Riesenberg, Klaris</creator><creator>Lapidot, Itshak</creator><creator>Segal, Yoram</creator><creator>Bigio, Irving J</creator><creator>Huleihel, Mahmoud</creator><creator>Salman, Ahmad</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4953-8648</orcidid></search><sort><creationdate>20190205</creationdate><title>Detection of Extended-Spectrum β‑Lactamase-Producing Escherichia coli Using Infrared Microscopy and Machine-Learning Algorithms</title><author>Sharaha, Uraib ; Rodriguez-Diaz, Eladio ; Sagi, Orli ; Riesenberg, Klaris ; Lapidot, Itshak ; Segal, Yoram ; Bigio, Irving J ; Huleihel, Mahmoud ; Salman, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-e11b92d25f489293801318c1be75b8eca43816891014703d52ba6d07bc3a83b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Chemistry</topic><topic>Complications</topic><topic>Culture</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Infections</topic><topic>Infrared analysis</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Microscopy</topic><topic>Multidrug resistance</topic><topic>Multidrug resistant organisms</topic><topic>Multivariate analysis</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharaha, Uraib</creatorcontrib><creatorcontrib>Rodriguez-Diaz, Eladio</creatorcontrib><creatorcontrib>Sagi, Orli</creatorcontrib><creatorcontrib>Riesenberg, Klaris</creatorcontrib><creatorcontrib>Lapidot, Itshak</creatorcontrib><creatorcontrib>Segal, Yoram</creatorcontrib><creatorcontrib>Bigio, Irving J</creatorcontrib><creatorcontrib>Huleihel, Mahmoud</creatorcontrib><creatorcontrib>Salman, Ahmad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharaha, Uraib</au><au>Rodriguez-Diaz, Eladio</au><au>Sagi, Orli</au><au>Riesenberg, Klaris</au><au>Lapidot, Itshak</au><au>Segal, Yoram</au><au>Bigio, Irving J</au><au>Huleihel, Mahmoud</au><au>Salman, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Extended-Spectrum β‑Lactamase-Producing Escherichia coli Using Infrared Microscopy and Machine-Learning Algorithms</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-02-05</date><risdate>2019</risdate><volume>91</volume><issue>3</issue><spage>2525</spage><epage>2530</epage><pages>2525-2530</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The spread of multidrug resistant bacteria has become a global concern. One of the most important and emergent classes of multidrug-resistant bacteria is extended-spectrum β-lactamase-producing bacteria (ESBL-positive = ESBL+). Due to widespread and continuous evolution of ESBL-producing bacteria, they become increasingly resistant to many of the commonly used antibiotics, leading to an increase in the mortality associated with resulting infections. Timely detection of ESBL-producing bacteria and rapid determination of their susceptibility to appropriate antibiotics can reduce the spread of these bacteria and the consequent complications. Routine methods used for the detection of ESBL-producing bacteria are time-consuming, requiring at least 48 h to obtain results. In this study, we evaluated the potential of infrared spectroscopic microscopy, combined with multivariate analysis for rapid detection of ESBL-producing Escherichia coli (E. coli) isolated from urinary-tract infection (UTI) samples. Our measurements were conducted on 837 samples of uropathogenic E. coli (UPEC), including 268 ESBL+ and 569 ESBL-negative (ESBL–) samples. All samples were obtained from bacterial colonies after 24 h culture (first culture) from midstream patients’ urine. Our results revealed that it is possible to detect ESBL-producing bacteria, with a 97% success rate, 99% sensitivity, and 94% specificity for the tested samples, in a time span of few minutes following the first culture.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30681832</pmid><doi>10.1021/acs.analchem.8b05497</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4953-8648</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-02, Vol.91 (3), p.2525-2530
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2179416155
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Algorithms
Analytical chemistry
Antibiotics
Bacteria
Chemistry
Complications
Culture
E coli
Escherichia coli
Infections
Infrared analysis
Learning algorithms
Machine learning
Microscopy
Multidrug resistance
Multidrug resistant organisms
Multivariate analysis
Urine
title Detection of Extended-Spectrum β‑Lactamase-Producing Escherichia coli Using Infrared Microscopy and Machine-Learning Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Extended-Spectrum%20%CE%B2%E2%80%91Lactamase-Producing%20Escherichia%20coli%20Using%20Infrared%20Microscopy%20and%20Machine-Learning%20Algorithms&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Sharaha,%20Uraib&rft.date=2019-02-05&rft.volume=91&rft.issue=3&rft.spage=2525&rft.epage=2530&rft.pages=2525-2530&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b05497&rft_dat=%3Cproquest_cross%3E2179416155%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-e11b92d25f489293801318c1be75b8eca43816891014703d52ba6d07bc3a83b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178125504&rft_id=info:pmid/30681832&rfr_iscdi=true