Loading…

Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study

The estimated cost of fire in the United States is about $329 billion a year, yet there are gaps in the literature to measure the effectiveness of investment and to allocate resources optimally in fire protection. This article fills these gaps by creating data‐driven empirical and theoretical models...

Full description

Saved in:
Bibliographic Details
Published in:Risk analysis 2019-06, Vol.39 (6), p.1358-1381
Main Authors: Behrendt, Adam, Payyappalli, Vineet M., Zhuang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3572-f918df438ec1c999b4bfd960192d7c1533058484917fedfea92b264603e817e03
cites cdi_FETCH-LOGICAL-c3572-f918df438ec1c999b4bfd960192d7c1533058484917fedfea92b264603e817e03
container_end_page 1381
container_issue 6
container_start_page 1358
container_title Risk analysis
container_volume 39
creator Behrendt, Adam
Payyappalli, Vineet M.
Zhuang, Jun
description The estimated cost of fire in the United States is about $329 billion a year, yet there are gaps in the literature to measure the effectiveness of investment and to allocate resources optimally in fire protection. This article fills these gaps by creating data‐driven empirical and theoretical models to study the effectiveness of nationwide fire protection investment in reducing economic and human losses. The regression between investment and loss vulnerability shows high R2 values (≈0.93). This article also contributes to the literature by modeling strategic (national‐level or state‐level) resource allocation (RA) for fire protection with equity‐efficiency trade‐off considerations, while existing literature focuses on operational‐level RA. This model and its numerical analyses provide techniques and insights to aid the strategic decision‐making process. The results from this model are used to calculate fire risk scores for various geographic regions, which can be used as an indicator of fire risk. A case study of federal fire grant allocation is used to validate and show the utility of the optimal RA model. The results also identify potential underinvestment and overinvestment in fire protection in certain regions. This article presents scenarios in which the model presented outperforms the existing RA scheme, when compared in terms of the correlation of resources allocated with actual number of fire incidents. This article provides some novel insights to policymakers and analysts in fire protection and safety that would help in mitigating economic costs and saving lives.
doi_str_mv 10.1111/risa.13262
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179417163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179417163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-f918df438ec1c999b4bfd960192d7c1533058484917fedfea92b264603e817e03</originalsourceid><addsrcrecordid>eNp9kcFqVDEUhoModqxufAAJuJHCtDlJ7s2Nu2FotVCptHYdMsmJpty5qcm9ltn1HXxDn8TMTHXhwrM5cPj4OD8_Ia-BHUOdkxyLPQbBW_6EzKARet5qLp-SGeOKz6UQ_IC8KOWWMWCsUc_JgWBtw0DrGXn4lDz2cfhKx29Il6mM9DQEdGP8gQOWQlOgZzEj_ZzTuD2ngV5hSVN2SBd9n5zd3eKwE9wMcURPr0c7YnlPd_JC7eCppaA79uvhJ2cg6dIWrNTkNy_Js2D7gq8e9yG5OTv9svw4v7j8cL5cXMydaGqKoKHzQYoOHTit9UqugtdtDcG9cjW0YE0nO6lBBfQBreYr3sqWCexAIROH5N3ee5fT9wnLaNaxOOx7O2CaiuGgtAQFrajo23_Q25p3qN8ZzoXmSoFsK3W0p1xOpWQM5i7Htc0bA8xsezHbXsyulwq_eVROqzX6v-ifIioAe-A-9rj5j8pcnV8v9tLfiR-WiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239277146</pqid></control><display><type>article</type><title>Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost SPORTDiscus with Full Text</source><source>Business Source Ultimate</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>PAIS Index</source><creator>Behrendt, Adam ; Payyappalli, Vineet M. ; Zhuang, Jun</creator><creatorcontrib>Behrendt, Adam ; Payyappalli, Vineet M. ; Zhuang, Jun</creatorcontrib><description>The estimated cost of fire in the United States is about $329 billion a year, yet there are gaps in the literature to measure the effectiveness of investment and to allocate resources optimally in fire protection. This article fills these gaps by creating data‐driven empirical and theoretical models to study the effectiveness of nationwide fire protection investment in reducing economic and human losses. The regression between investment and loss vulnerability shows high R2 values (≈0.93). This article also contributes to the literature by modeling strategic (national‐level or state‐level) resource allocation (RA) for fire protection with equity‐efficiency trade‐off considerations, while existing literature focuses on operational‐level RA. This model and its numerical analyses provide techniques and insights to aid the strategic decision‐making process. The results from this model are used to calculate fire risk scores for various geographic regions, which can be used as an indicator of fire risk. A case study of federal fire grant allocation is used to validate and show the utility of the optimal RA model. The results also identify potential underinvestment and overinvestment in fire protection in certain regions. This article presents scenarios in which the model presented outperforms the existing RA scheme, when compared in terms of the correlation of resources allocated with actual number of fire incidents. This article provides some novel insights to policymakers and analysts in fire protection and safety that would help in mitigating economic costs and saving lives.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.13262</identifier><identifier>PMID: 30650199</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Case studies ; Cost analysis ; Cost effectiveness ; Costs ; Cost‐benefit analysis ; Decision analysis ; Decision making ; Economic impact ; Effectiveness ; Empirical analysis ; Fire protection ; Fire safety ; firefighting ; Fires ; Investment ; Investments ; Optimization ; Policy making ; Regions ; Regression analysis ; Resource allocation ; Risk assessment ; Vulnerability</subject><ispartof>Risk analysis, 2019-06, Vol.39 (6), p.1358-1381</ispartof><rights>2019 Society for Risk Analysis</rights><rights>2019 Society for Risk Analysis.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-f918df438ec1c999b4bfd960192d7c1533058484917fedfea92b264603e817e03</citedby><cites>FETCH-LOGICAL-c3572-f918df438ec1c999b4bfd960192d7c1533058484917fedfea92b264603e817e03</cites><orcidid>0000-0003-4830-6570 ; 0000-0002-0711-5711 ; 0000-0002-5213-3003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27866,27924,27925,33223</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30650199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Behrendt, Adam</creatorcontrib><creatorcontrib>Payyappalli, Vineet M.</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><title>Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>The estimated cost of fire in the United States is about $329 billion a year, yet there are gaps in the literature to measure the effectiveness of investment and to allocate resources optimally in fire protection. This article fills these gaps by creating data‐driven empirical and theoretical models to study the effectiveness of nationwide fire protection investment in reducing economic and human losses. The regression between investment and loss vulnerability shows high R2 values (≈0.93). This article also contributes to the literature by modeling strategic (national‐level or state‐level) resource allocation (RA) for fire protection with equity‐efficiency trade‐off considerations, while existing literature focuses on operational‐level RA. This model and its numerical analyses provide techniques and insights to aid the strategic decision‐making process. The results from this model are used to calculate fire risk scores for various geographic regions, which can be used as an indicator of fire risk. A case study of federal fire grant allocation is used to validate and show the utility of the optimal RA model. The results also identify potential underinvestment and overinvestment in fire protection in certain regions. This article presents scenarios in which the model presented outperforms the existing RA scheme, when compared in terms of the correlation of resources allocated with actual number of fire incidents. This article provides some novel insights to policymakers and analysts in fire protection and safety that would help in mitigating economic costs and saving lives.</description><subject>Case studies</subject><subject>Cost analysis</subject><subject>Cost effectiveness</subject><subject>Costs</subject><subject>Cost‐benefit analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Economic impact</subject><subject>Effectiveness</subject><subject>Empirical analysis</subject><subject>Fire protection</subject><subject>Fire safety</subject><subject>firefighting</subject><subject>Fires</subject><subject>Investment</subject><subject>Investments</subject><subject>Optimization</subject><subject>Policy making</subject><subject>Regions</subject><subject>Regression analysis</subject><subject>Resource allocation</subject><subject>Risk assessment</subject><subject>Vulnerability</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kcFqVDEUhoModqxufAAJuJHCtDlJ7s2Nu2FotVCptHYdMsmJpty5qcm9ltn1HXxDn8TMTHXhwrM5cPj4OD8_Ia-BHUOdkxyLPQbBW_6EzKARet5qLp-SGeOKz6UQ_IC8KOWWMWCsUc_JgWBtw0DrGXn4lDz2cfhKx29Il6mM9DQEdGP8gQOWQlOgZzEj_ZzTuD2ngV5hSVN2SBd9n5zd3eKwE9wMcURPr0c7YnlPd_JC7eCppaA79uvhJ2cg6dIWrNTkNy_Js2D7gq8e9yG5OTv9svw4v7j8cL5cXMydaGqKoKHzQYoOHTit9UqugtdtDcG9cjW0YE0nO6lBBfQBreYr3sqWCexAIROH5N3ee5fT9wnLaNaxOOx7O2CaiuGgtAQFrajo23_Q25p3qN8ZzoXmSoFsK3W0p1xOpWQM5i7Htc0bA8xsezHbXsyulwq_eVROqzX6v-ifIioAe-A-9rj5j8pcnV8v9tLfiR-WiQ</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Behrendt, Adam</creator><creator>Payyappalli, Vineet M.</creator><creator>Zhuang, Jun</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TQ</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4830-6570</orcidid><orcidid>https://orcid.org/0000-0002-0711-5711</orcidid><orcidid>https://orcid.org/0000-0002-5213-3003</orcidid></search><sort><creationdate>201906</creationdate><title>Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study</title><author>Behrendt, Adam ; Payyappalli, Vineet M. ; Zhuang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-f918df438ec1c999b4bfd960192d7c1533058484917fedfea92b264603e817e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Case studies</topic><topic>Cost analysis</topic><topic>Cost effectiveness</topic><topic>Costs</topic><topic>Cost‐benefit analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Economic impact</topic><topic>Effectiveness</topic><topic>Empirical analysis</topic><topic>Fire protection</topic><topic>Fire safety</topic><topic>firefighting</topic><topic>Fires</topic><topic>Investment</topic><topic>Investments</topic><topic>Optimization</topic><topic>Policy making</topic><topic>Regions</topic><topic>Regression analysis</topic><topic>Resource allocation</topic><topic>Risk assessment</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behrendt, Adam</creatorcontrib><creatorcontrib>Payyappalli, Vineet M.</creatorcontrib><creatorcontrib>Zhuang, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrendt, Adam</au><au>Payyappalli, Vineet M.</au><au>Zhuang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2019-06</date><risdate>2019</risdate><volume>39</volume><issue>6</issue><spage>1358</spage><epage>1381</epage><pages>1358-1381</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>The estimated cost of fire in the United States is about $329 billion a year, yet there are gaps in the literature to measure the effectiveness of investment and to allocate resources optimally in fire protection. This article fills these gaps by creating data‐driven empirical and theoretical models to study the effectiveness of nationwide fire protection investment in reducing economic and human losses. The regression between investment and loss vulnerability shows high R2 values (≈0.93). This article also contributes to the literature by modeling strategic (national‐level or state‐level) resource allocation (RA) for fire protection with equity‐efficiency trade‐off considerations, while existing literature focuses on operational‐level RA. This model and its numerical analyses provide techniques and insights to aid the strategic decision‐making process. The results from this model are used to calculate fire risk scores for various geographic regions, which can be used as an indicator of fire risk. A case study of federal fire grant allocation is used to validate and show the utility of the optimal RA model. The results also identify potential underinvestment and overinvestment in fire protection in certain regions. This article presents scenarios in which the model presented outperforms the existing RA scheme, when compared in terms of the correlation of resources allocated with actual number of fire incidents. This article provides some novel insights to policymakers and analysts in fire protection and safety that would help in mitigating economic costs and saving lives.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30650199</pmid><doi>10.1111/risa.13262</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4830-6570</orcidid><orcidid>https://orcid.org/0000-0002-0711-5711</orcidid><orcidid>https://orcid.org/0000-0002-5213-3003</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 2019-06, Vol.39 (6), p.1358-1381
issn 0272-4332
1539-6924
language eng
recordid cdi_proquest_miscellaneous_2179417163
source International Bibliography of the Social Sciences (IBSS); EBSCOhost SPORTDiscus with Full Text; Business Source Ultimate; Wiley-Blackwell Read & Publish Collection; PAIS Index
subjects Case studies
Cost analysis
Cost effectiveness
Costs
Cost‐benefit analysis
Decision analysis
Decision making
Economic impact
Effectiveness
Empirical analysis
Fire protection
Fire safety
firefighting
Fires
Investment
Investments
Optimization
Policy making
Regions
Regression analysis
Resource allocation
Risk assessment
Vulnerability
title Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Cost%20Effectiveness%20of%20Fire%20Protection%20Resource%20Allocation%20in%20the%20United%20States:%20Models%20and%20a%201980%E2%80%932014%20Case%20Study&rft.jtitle=Risk%20analysis&rft.au=Behrendt,%20Adam&rft.date=2019-06&rft.volume=39&rft.issue=6&rft.spage=1358&rft.epage=1381&rft.pages=1358-1381&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.13262&rft_dat=%3Cproquest_cross%3E2179417163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3572-f918df438ec1c999b4bfd960192d7c1533058484917fedfea92b264603e817e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2239277146&rft_id=info:pmid/30650199&rfr_iscdi=true