Loading…

Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines

In this study, the ac magnetic hyperthermia responses of spinel CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of comparable sizes (∼20 nm) were investigated to evaluate their feasibility of use in magnetic hyperthermia. The heating ability of EDT-coated nanoparticles which were dispersed in two differ...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-02, Vol.11 (7), p.6858-6866
Main Authors: Demirci Dönmez, Çiğdem E, Manna, Palash K, Nickel, Rachel, Aktürk, Selçuk, van Lierop, Johan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a396t-a60306f05b363b3b2e54b9026ea6061ecae61a20e47fc0723c2fd0aac54748ab3
cites cdi_FETCH-LOGICAL-a396t-a60306f05b363b3b2e54b9026ea6061ecae61a20e47fc0723c2fd0aac54748ab3
container_end_page 6866
container_issue 7
container_start_page 6858
container_title ACS applied materials & interfaces
container_volume 11
creator Demirci Dönmez, Çiğdem E
Manna, Palash K
Nickel, Rachel
Aktürk, Selçuk
van Lierop, Johan
description In this study, the ac magnetic hyperthermia responses of spinel CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of comparable sizes (∼20 nm) were investigated to evaluate their feasibility of use in magnetic hyperthermia. The heating ability of EDT-coated nanoparticles which were dispersed in two different carrier media, deionized water and ethylene glycol, at concentrations of 1 and 2 mg/mL, was evaluated by estimating the specific loss power (SLP) (which is a measure of magnetic energy transformed into heat) under magnetic fields of 15, 25, and 50 kA/m at a constant frequency of 195 kHz. The maximum value of SLP has been found to be ∼315 W/g for CoFe2O4 and ∼295 W/g for MnFe2O4 and NiFe2O4 nanoparticles. We report very promising heating temperature rising characteristics of CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles under different applied magnetic fields that indicate the effectiveness of these nanoparticles as hyperthermia agents.
doi_str_mv 10.1021/acsami.8b22600
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179426390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179426390</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-a60306f05b363b3b2e54b9026ea6061ecae61a20e47fc0723c2fd0aac54748ab3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0E4ntlRB4RIsWxHacZoWopEpQF5ujinoshsYudInXjT8eohY3pTrrfvbv3CDnL2SBnPL8GHaGzg2HDuWJshxzmlZTZkBd896-X8oAcxfjGmBKcFfvkQDBVqlLIQ_I18t0SAvT2E-kUU3ULOjbGaotOr6k3dOQbaPvsij6CW4DDiKkHN6czq9-xzSYYgu2RzsD5JNVb3WKkxgcKdLpeYuhfMXQW6M0CXU-to7fWdzhPJ5LYCdkz0EY83dZj8jIZP4-m2cPT3f3o5iEDUak-A8XS04YVjVCiEQ3HQjYV4wrTROWoAVUOnKEsjWYlF5qbOQPQhSzlEBpxTC42usvgP1YY-7qzUWPbJkd-FWuel5XkSlQsoYMNqoOPMaCpl8F2ENZ1zuqf1OtN6vU29bRwvtVeNcnYH_4bcwIuN0BarN_8Krhk9T-1bwTOjT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179426390</pqid></control><display><type>article</type><title>Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Demirci Dönmez, Çiğdem E ; Manna, Palash K ; Nickel, Rachel ; Aktürk, Selçuk ; van Lierop, Johan</creator><creatorcontrib>Demirci Dönmez, Çiğdem E ; Manna, Palash K ; Nickel, Rachel ; Aktürk, Selçuk ; van Lierop, Johan</creatorcontrib><description>In this study, the ac magnetic hyperthermia responses of spinel CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of comparable sizes (∼20 nm) were investigated to evaluate their feasibility of use in magnetic hyperthermia. The heating ability of EDT-coated nanoparticles which were dispersed in two different carrier media, deionized water and ethylene glycol, at concentrations of 1 and 2 mg/mL, was evaluated by estimating the specific loss power (SLP) (which is a measure of magnetic energy transformed into heat) under magnetic fields of 15, 25, and 50 kA/m at a constant frequency of 195 kHz. The maximum value of SLP has been found to be ∼315 W/g for CoFe2O4 and ∼295 W/g for MnFe2O4 and NiFe2O4 nanoparticles. We report very promising heating temperature rising characteristics of CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles under different applied magnetic fields that indicate the effectiveness of these nanoparticles as hyperthermia agents.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b22600</identifier><identifier>PMID: 30676734</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cobalt - chemistry ; Ferric Compounds - chemistry ; Humans ; Hyperthermia, Induced - methods ; Magnetic Fields ; Manganese - chemistry ; Nanoparticles - chemistry ; Nickel - chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2019-02, Vol.11 (7), p.6858-6866</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-a60306f05b363b3b2e54b9026ea6061ecae61a20e47fc0723c2fd0aac54748ab3</citedby><cites>FETCH-LOGICAL-a396t-a60306f05b363b3b2e54b9026ea6061ecae61a20e47fc0723c2fd0aac54748ab3</cites><orcidid>0000-0002-0882-2805 ; 0000-0002-3081-0691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30676734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demirci Dönmez, Çiğdem E</creatorcontrib><creatorcontrib>Manna, Palash K</creatorcontrib><creatorcontrib>Nickel, Rachel</creatorcontrib><creatorcontrib>Aktürk, Selçuk</creatorcontrib><creatorcontrib>van Lierop, Johan</creatorcontrib><title>Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this study, the ac magnetic hyperthermia responses of spinel CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of comparable sizes (∼20 nm) were investigated to evaluate their feasibility of use in magnetic hyperthermia. The heating ability of EDT-coated nanoparticles which were dispersed in two different carrier media, deionized water and ethylene glycol, at concentrations of 1 and 2 mg/mL, was evaluated by estimating the specific loss power (SLP) (which is a measure of magnetic energy transformed into heat) under magnetic fields of 15, 25, and 50 kA/m at a constant frequency of 195 kHz. The maximum value of SLP has been found to be ∼315 W/g for CoFe2O4 and ∼295 W/g for MnFe2O4 and NiFe2O4 nanoparticles. We report very promising heating temperature rising characteristics of CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles under different applied magnetic fields that indicate the effectiveness of these nanoparticles as hyperthermia agents.</description><subject>Cobalt - chemistry</subject><subject>Ferric Compounds - chemistry</subject><subject>Humans</subject><subject>Hyperthermia, Induced - methods</subject><subject>Magnetic Fields</subject><subject>Manganese - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Nickel - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0E4ntlRB4RIsWxHacZoWopEpQF5ujinoshsYudInXjT8eohY3pTrrfvbv3CDnL2SBnPL8GHaGzg2HDuWJshxzmlZTZkBd896-X8oAcxfjGmBKcFfvkQDBVqlLIQ_I18t0SAvT2E-kUU3ULOjbGaotOr6k3dOQbaPvsij6CW4DDiKkHN6czq9-xzSYYgu2RzsD5JNVb3WKkxgcKdLpeYuhfMXQW6M0CXU-to7fWdzhPJ5LYCdkz0EY83dZj8jIZP4-m2cPT3f3o5iEDUak-A8XS04YVjVCiEQ3HQjYV4wrTROWoAVUOnKEsjWYlF5qbOQPQhSzlEBpxTC42usvgP1YY-7qzUWPbJkd-FWuel5XkSlQsoYMNqoOPMaCpl8F2ENZ1zuqf1OtN6vU29bRwvtVeNcnYH_4bcwIuN0BarN_8Krhk9T-1bwTOjT4</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Demirci Dönmez, Çiğdem E</creator><creator>Manna, Palash K</creator><creator>Nickel, Rachel</creator><creator>Aktürk, Selçuk</creator><creator>van Lierop, Johan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0882-2805</orcidid><orcidid>https://orcid.org/0000-0002-3081-0691</orcidid></search><sort><creationdate>20190220</creationdate><title>Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines</title><author>Demirci Dönmez, Çiğdem E ; Manna, Palash K ; Nickel, Rachel ; Aktürk, Selçuk ; van Lierop, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-a60306f05b363b3b2e54b9026ea6061ecae61a20e47fc0723c2fd0aac54748ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cobalt - chemistry</topic><topic>Ferric Compounds - chemistry</topic><topic>Humans</topic><topic>Hyperthermia, Induced - methods</topic><topic>Magnetic Fields</topic><topic>Manganese - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Nickel - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirci Dönmez, Çiğdem E</creatorcontrib><creatorcontrib>Manna, Palash K</creatorcontrib><creatorcontrib>Nickel, Rachel</creatorcontrib><creatorcontrib>Aktürk, Selçuk</creatorcontrib><creatorcontrib>van Lierop, Johan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirci Dönmez, Çiğdem E</au><au>Manna, Palash K</au><au>Nickel, Rachel</au><au>Aktürk, Selçuk</au><au>van Lierop, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>11</volume><issue>7</issue><spage>6858</spage><epage>6866</epage><pages>6858-6866</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this study, the ac magnetic hyperthermia responses of spinel CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of comparable sizes (∼20 nm) were investigated to evaluate their feasibility of use in magnetic hyperthermia. The heating ability of EDT-coated nanoparticles which were dispersed in two different carrier media, deionized water and ethylene glycol, at concentrations of 1 and 2 mg/mL, was evaluated by estimating the specific loss power (SLP) (which is a measure of magnetic energy transformed into heat) under magnetic fields of 15, 25, and 50 kA/m at a constant frequency of 195 kHz. The maximum value of SLP has been found to be ∼315 W/g for CoFe2O4 and ∼295 W/g for MnFe2O4 and NiFe2O4 nanoparticles. We report very promising heating temperature rising characteristics of CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles under different applied magnetic fields that indicate the effectiveness of these nanoparticles as hyperthermia agents.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30676734</pmid><doi>10.1021/acsami.8b22600</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0882-2805</orcidid><orcidid>https://orcid.org/0000-0002-3081-0691</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-02, Vol.11 (7), p.6858-6866
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2179426390
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cobalt - chemistry
Ferric Compounds - chemistry
Humans
Hyperthermia, Induced - methods
Magnetic Fields
Manganese - chemistry
Nanoparticles - chemistry
Nickel - chemistry
title Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Heating%20Efficiency%20of%20Cobalt-,%20Manganese-,%20and%20Nickel-Ferrite%20Nanoparticles%20for%20a%20Hyperthermia%20Agent%20in%20Biomedicines&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Demirci%20Do%CC%88nmez,%20C%CC%A7ig%CC%86dem%20E&rft.date=2019-02-20&rft.volume=11&rft.issue=7&rft.spage=6858&rft.epage=6866&rft.pages=6858-6866&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b22600&rft_dat=%3Cproquest_cross%3E2179426390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-a60306f05b363b3b2e54b9026ea6061ecae61a20e47fc0723c2fd0aac54748ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179426390&rft_id=info:pmid/30676734&rfr_iscdi=true