Loading…

FOXO regulates cell fate specification of Drosophila ventral olfactory projection neurons

Diverse types of neurons must be specified in the developing brain to form the functional neural circuits that are necessary for the execution of daily tasks. Here, we describe the participation of Forkhead box class O (FOXO) in cell fate specification of a small subset of Drosophila ventral olfacto...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurogenetics 2019-01, Vol.33 (1), p.33-40
Main Authors: Wei, Jia-Yi, Chung, Pei-Chi, Chu, Sao-Yu, Yu, Hung-Hsiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diverse types of neurons must be specified in the developing brain to form the functional neural circuits that are necessary for the execution of daily tasks. Here, we describe the participation of Forkhead box class O (FOXO) in cell fate specification of a small subset of Drosophila ventral olfactory projection neurons (vPNs). Using the two-color labeling system, twin-spot MARCM, we determined the temporal birth order of each vPN type, and this characterization served as a foundation to investigate regulators of cell fate specification. Flies deficient for chinmo, a known temporal cell fate regulator, exhibited a partial loss of vPNs, suggesting that the gene plays a complex role in specifying vPN cell fate and is not the only regulator of this process. Interestingly, loss of foxo function resulted in the precocious appearance of late-born vPNs in place of early-born vPNs, whereas overexpression of constitutively active FOXO caused late-born vPNs to take on a morphology reminiscent of earlier born vPNs. Taken together, these data suggest that FOXO temporally regulates vPN cell fate specification. The comprehensive identification of molecules that regulate neuronal fate specification promises to provide a better understanding of the mechanisms governing the formation of functional brain tissue.
ISSN:0167-7063
1563-5260
DOI:10.1080/01677063.2018.1556651