Loading…
Mechanically Induced Switching of Molecular Layers
Within the field of switchable surfaces, azobenzenes are an extensively studied group of molecules, known for reversibly changing conformation upon illumination with light of different wavelengths. Relying on the ability of the molecules to change properties and structure as a response to external s...
Saved in:
Published in: | Nano letters 2019-02, Vol.19 (2), p.816-822 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within the field of switchable surfaces, azobenzenes are an extensively studied group of molecules, known for reversibly changing conformation upon illumination with light of different wavelengths. Relying on the ability of the molecules to change properties and structure as a response to external stimuli, they have been incorporated in various devices, such as molecular switches and motors. In contrast to the well-documented switching by light irradiation, we report the discovery of mechanically triggered switching of self-assembled azobenzene monolayers, resulting in changes of surface wettability, adhesion, and friction. This mechanically induced cis–trans isomerization is triggered either locally and selectively by AFM or macroscopically by particle impact. The process is optically reversible, enabling consecutive switching cycles. Collective switching behavior was also observed, propagating from the original point of impact in a domino-like manner. Finally, local force application facilitated nondestructive and erasable nanopatterning, the cis–trans nanolithography. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.8b03987 |