Loading…

Ferroelectric Analog Synaptic Transistors

Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic device...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2019-03, Vol.19 (3), p.2044-2050
Main Authors: Kim, Min-Kyu, Lee, Jang-Sik
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833
cites cdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833
container_end_page 2050
container_issue 3
container_start_page 2044
container_title Nano letters
container_volume 19
creator Kim, Min-Kyu
Lee, Jang-Sik
description Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.
doi_str_mv 10.1021/acs.nanolett.9b00180
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179476994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179476994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRWK3-A2O61MXUywADLJvGqkkTF9Y1YYAx00yHCsyi_16aPpau7iPnnJv7IfSAYYqhxC_axGmve9-5lKayBsACLtANZgSKSsry8twLOkK3Ma4BQBIG12hEIG8lr27Q88KF4F3nTAqtmcx63fmfydeu19uU51XQfWxj8iHeoatGd9HdH-sYfS9eV_P3Yvn59jGfLQtNqEiFA8utJbLRQtpG8Jqy2mJqammcrYwFqhlooI5Kg4Fj27CKNrbktWBMCELG6OmQuw3-d3AxqU0bjes63Ts_RFViLinPH9IspQepCT7G4Bq1De1Gh53CoPaQVIakTpDUEVK2PR4vDPXG2bPpRCUL4CDY29d-CJlK_D_zD-QudsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179476994</pqid></control><display><type>article</type><title>Ferroelectric Analog Synaptic Transistors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, Min-Kyu ; Lee, Jang-Sik</creator><creatorcontrib>Kim, Min-Kyu ; Lee, Jang-Sik</creatorcontrib><description>Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b00180</identifier><identifier>PMID: 30698976</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-03, Vol.19 (3), p.2044-2050</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</citedby><cites>FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</cites><orcidid>0000-0002-1096-1783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30698976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Min-Kyu</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><title>Ferroelectric Analog Synaptic Transistors</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEUhYnRWK3-A2O61MXUywADLJvGqkkTF9Y1YYAx00yHCsyi_16aPpau7iPnnJv7IfSAYYqhxC_axGmve9-5lKayBsACLtANZgSKSsry8twLOkK3Ma4BQBIG12hEIG8lr27Q88KF4F3nTAqtmcx63fmfydeu19uU51XQfWxj8iHeoatGd9HdH-sYfS9eV_P3Yvn59jGfLQtNqEiFA8utJbLRQtpG8Jqy2mJqammcrYwFqhlooI5Kg4Fj27CKNrbktWBMCELG6OmQuw3-d3AxqU0bjes63Ts_RFViLinPH9IspQepCT7G4Bq1De1Gh53CoPaQVIakTpDUEVK2PR4vDPXG2bPpRCUL4CDY29d-CJlK_D_zD-QudsI</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Kim, Min-Kyu</creator><creator>Lee, Jang-Sik</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1096-1783</orcidid></search><sort><creationdate>20190313</creationdate><title>Ferroelectric Analog Synaptic Transistors</title><author>Kim, Min-Kyu ; Lee, Jang-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min-Kyu</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min-Kyu</au><au>Lee, Jang-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric Analog Synaptic Transistors</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>19</volume><issue>3</issue><spage>2044</spage><epage>2050</epage><pages>2044-2050</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30698976</pmid><doi>10.1021/acs.nanolett.9b00180</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1096-1783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-03, Vol.19 (3), p.2044-2050
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2179476994
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Ferroelectric Analog Synaptic Transistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20Analog%20Synaptic%20Transistors&rft.jtitle=Nano%20letters&rft.au=Kim,%20Min-Kyu&rft.date=2019-03-13&rft.volume=19&rft.issue=3&rft.spage=2044&rft.epage=2050&rft.pages=2044-2050&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b00180&rft_dat=%3Cproquest_cross%3E2179476994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179476994&rft_id=info:pmid/30698976&rfr_iscdi=true