Loading…
Ferroelectric Analog Synaptic Transistors
Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic device...
Saved in:
Published in: | Nano letters 2019-03, Vol.19 (3), p.2044-2050 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833 |
container_end_page | 2050 |
container_issue | 3 |
container_start_page | 2044 |
container_title | Nano letters |
container_volume | 19 |
creator | Kim, Min-Kyu Lee, Jang-Sik |
description | Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices. |
doi_str_mv | 10.1021/acs.nanolett.9b00180 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179476994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179476994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRWK3-A2O61MXUywADLJvGqkkTF9Y1YYAx00yHCsyi_16aPpau7iPnnJv7IfSAYYqhxC_axGmve9-5lKayBsACLtANZgSKSsry8twLOkK3Ma4BQBIG12hEIG8lr27Q88KF4F3nTAqtmcx63fmfydeu19uU51XQfWxj8iHeoatGd9HdH-sYfS9eV_P3Yvn59jGfLQtNqEiFA8utJbLRQtpG8Jqy2mJqammcrYwFqhlooI5Kg4Fj27CKNrbktWBMCELG6OmQuw3-d3AxqU0bjes63Ts_RFViLinPH9IspQepCT7G4Bq1De1Gh53CoPaQVIakTpDUEVK2PR4vDPXG2bPpRCUL4CDY29d-CJlK_D_zD-QudsI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179476994</pqid></control><display><type>article</type><title>Ferroelectric Analog Synaptic Transistors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kim, Min-Kyu ; Lee, Jang-Sik</creator><creatorcontrib>Kim, Min-Kyu ; Lee, Jang-Sik</creatorcontrib><description>Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b00180</identifier><identifier>PMID: 30698976</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-03, Vol.19 (3), p.2044-2050</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</citedby><cites>FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</cites><orcidid>0000-0002-1096-1783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30698976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Min-Kyu</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><title>Ferroelectric Analog Synaptic Transistors</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEUhYnRWK3-A2O61MXUywADLJvGqkkTF9Y1YYAx00yHCsyi_16aPpau7iPnnJv7IfSAYYqhxC_axGmve9-5lKayBsACLtANZgSKSsry8twLOkK3Ma4BQBIG12hEIG8lr27Q88KF4F3nTAqtmcx63fmfydeu19uU51XQfWxj8iHeoatGd9HdH-sYfS9eV_P3Yvn59jGfLQtNqEiFA8utJbLRQtpG8Jqy2mJqammcrYwFqhlooI5Kg4Fj27CKNrbktWBMCELG6OmQuw3-d3AxqU0bjes63Ts_RFViLinPH9IspQepCT7G4Bq1De1Gh53CoPaQVIakTpDUEVK2PR4vDPXG2bPpRCUL4CDY29d-CJlK_D_zD-QudsI</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Kim, Min-Kyu</creator><creator>Lee, Jang-Sik</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1096-1783</orcidid></search><sort><creationdate>20190313</creationdate><title>Ferroelectric Analog Synaptic Transistors</title><author>Kim, Min-Kyu ; Lee, Jang-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Min-Kyu</creatorcontrib><creatorcontrib>Lee, Jang-Sik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Min-Kyu</au><au>Lee, Jang-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric Analog Synaptic Transistors</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>19</volume><issue>3</issue><spage>2044</spage><epage>2050</epage><pages>2044-2050</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Neuromorphic computing is a promising alternative to conventional computing systems as it could enable parallel computation and adaptive learning process. However, the development of energy efficient neuromorphic hardware systems has been hindered by the limited performance of analog synaptic devices. Here, we demonstrate the analog conductance modulation behavior in the ferroelectric thin-film transistors (FeTFT) that have the nanoscale ferroelectric material and oxide semiconductors. Accurate control of polarization changes in the nanoscale ferroelectric layer induces conductance modulation to demonstrate linear potentiation and depression characteristics of FeTFTs. Our devices show potentiation and depression properties, including high linearity, multiple states, and small cycle-to-cycle/device-to-device variations. In simulations with measured properties, a neuromorphic system with FeTFT achieves 91.1% recognition accuracy of handwritten digits. This work may provide a way to realize the neuromorphic hardware systems that use FeTFTs as the synaptic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30698976</pmid><doi>10.1021/acs.nanolett.9b00180</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1096-1783</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-03, Vol.19 (3), p.2044-2050 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179476994 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Ferroelectric Analog Synaptic Transistors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20Analog%20Synaptic%20Transistors&rft.jtitle=Nano%20letters&rft.au=Kim,%20Min-Kyu&rft.date=2019-03-13&rft.volume=19&rft.issue=3&rft.spage=2044&rft.epage=2050&rft.pages=2044-2050&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b00180&rft_dat=%3Cproquest_cross%3E2179476994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-e0d7dd39fa89df87b45bd14cb9ced6cd04a50a04e49c1071df564fd27b8558833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179476994&rft_id=info:pmid/30698976&rfr_iscdi=true |