Loading…
Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde
A nonvolatile fluorine-18 aldehyde prosthetic group was developed from [18F]SFB, and used for site-specific labeling of active site inhibited factor VII (FVIIai). FVIIai has a high affinity for tissue factor (TF), a transmembrane protein involved in angiogenesis, proliferation, cell migration, and...
Saved in:
Published in: | Bioconjugate chemistry 2019-03, Vol.30 (3), p.775-784 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nonvolatile fluorine-18 aldehyde prosthetic group was developed from [18F]SFB, and used for site-specific labeling of active site inhibited factor VII (FVIIai). FVIIai has a high affinity for tissue factor (TF), a transmembrane protein involved in angiogenesis, proliferation, cell migration, and survival of cancer cells. A hydroxylamine N-glycan modified FVIIai (FVIIai-ONH2) was used for oxime coupling with the aldehyde [18F]2 under mild and optimized conditions in an isolated RCY of 4.7 ± 0.9%, and a synthesis time of 267 ± 5 min (from EOB). Retained binding and specificity of the resulting [18F]FVIIai to TF was shown in vitro. TF-expression imaging capability was evaluated by in vivo PET/CT imaging in a pancreatic human xenograft cancer mouse model. The conjugate showed exceptional stability in plasma (>95% at 4 h) and a binding fraction of 90%. In vivo PET/CT imaging showed a mean tumor uptake of 3.8 ± 0.2% ID/g at 4 h post-injection, a comparable uptake in liver and kidneys, and low uptake in normal tissues. In conclusion, FVIIai was labeled with fluorine-18 at the N-glycan chain without affecting TF binding. In vitro specificity and a good in vivo imaging contrast at 4 h postinjection was demonstrated. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/acs.bioconjchem.8b00900 |