Loading…

Toward Deep Universal Sketch Perceptual Grouper

Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch pe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2019-07, Vol.28 (7), p.3219-3231
Main Authors: Ke Li, Kaiyue Pang, Yi-Zhe Song, Tao Xiang, Hospedales, Timothy M., Honggang Zhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-37b478c53f4dcbd49ec4b00cc4cedc0cc364deadfc83c793295f8da08828b73f3
cites cdi_FETCH-LOGICAL-c389t-37b478c53f4dcbd49ec4b00cc4cedc0cc364deadfc83c793295f8da08828b73f3
container_end_page 3231
container_issue 7
container_start_page 3219
container_title IEEE transactions on image processing
container_volume 28
creator Ke Li
Kaiyue Pang
Yi-Zhe Song
Tao Xiang
Hospedales, Timothy M.
Honggang Zhang
description Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch perceptual grouper. That is, a grouper that can be applied to sketches of any category created with any drawing style and ability, to group constituent strokes/segments into semantically meaningful object parts. The first obstacle to achieving this goal is the lack of large-scale datasets with grouping annotation. To overcome this, we contribute the largest sketch perceptual grouping dataset to date, consisting of 20 000 unique sketches evenly distributed over 25 object categories. Furthermore, we propose a novel deep perceptual grouping model learned with both generative and discriminative losses. The generative loss improves the generalization ability of the model, while the discriminative loss guarantees both local and global grouping consistency. Extensive experiments demonstrate that the proposed grouper significantly outperforms the state-of-the-art competitors. In addition, we show that our grouper is useful for a number of sketch analysis tasks, including sketch semantic segmentation, synthesis, and fine-grained sketch-based image retrieval.
doi_str_mv 10.1109/TIP.2019.2895155
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179493620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8626530</ieee_id><sourcerecordid>2179493620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-37b478c53f4dcbd49ec4b00cc4cedc0cc364deadfc83c793295f8da08828b73f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3eBUEKXryknf1Kdo9StRYKFmzPS7KZYGraxN1E8d-7pbUHTzPMPO8wPIRcUxhRCnq8nC1GDKgeMaUllfKE9KkWNAIQ7DT0IJMooUL3yIX3awAqJI3PSY9DAhwY7ZPxsv5OXT58RGyGq235hc6n1fDtA1v7Plygs9i0XZhMXd016C7JWZFWHq8OdUBWz0_LyUs0f53OJg_zyHKl24gnmUiUlbwQuc1yodGKDMBaYTG3ofJY5JjmhVXcJpozLQuVp6AUU1nCCz4g9_u7jas_O_St2ZTeYlWlW6w7bxhNtNA8ZhDQu3_ouu7cNnxnGGMxjWXMRaBgT1lXe--wMI0rN6n7MRTMTqYJMs1OpjnIDJHbw-Eu22B-DPzZC8DNHigR8bhWMYslB_4LSox21w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226165634</pqid></control><display><type>article</type><title>Toward Deep Universal Sketch Perceptual Grouper</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ke Li ; Kaiyue Pang ; Yi-Zhe Song ; Tao Xiang ; Hospedales, Timothy M. ; Honggang Zhang</creator><creatorcontrib>Ke Li ; Kaiyue Pang ; Yi-Zhe Song ; Tao Xiang ; Hospedales, Timothy M. ; Honggang Zhang</creatorcontrib><description>Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch perceptual grouper. That is, a grouper that can be applied to sketches of any category created with any drawing style and ability, to group constituent strokes/segments into semantically meaningful object parts. The first obstacle to achieving this goal is the lack of large-scale datasets with grouping annotation. To overcome this, we contribute the largest sketch perceptual grouping dataset to date, consisting of 20 000 unique sketches evenly distributed over 25 object categories. Furthermore, we propose a novel deep perceptual grouping model learned with both generative and discriminative losses. The generative loss improves the generalization ability of the model, while the discriminative loss guarantees both local and global grouping consistency. Extensive experiments demonstrate that the proposed grouper significantly outperforms the state-of-the-art competitors. In addition, we show that our grouper is useful for a number of sketch analysis tasks, including sketch semantic segmentation, synthesis, and fine-grained sketch-based image retrieval.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2895155</identifier><identifier>PMID: 30703021</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; Data models ; dataset ; deep grouping model ; Image annotation ; Image management ; Image retrieval ; Image segmentation ; Semantics ; Sketch perceptual grouping ; Sketches ; Task analysis ; Training ; universal grouper ; Visualization</subject><ispartof>IEEE transactions on image processing, 2019-07, Vol.28 (7), p.3219-3231</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-37b478c53f4dcbd49ec4b00cc4cedc0cc364deadfc83c793295f8da08828b73f3</citedby><cites>FETCH-LOGICAL-c389t-37b478c53f4dcbd49ec4b00cc4cedc0cc364deadfc83c793295f8da08828b73f3</cites><orcidid>0000-0001-8287-6783 ; 0000-0002-9739-7969 ; 0000-0002-2530-1059 ; 0000-0003-4867-7486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8626530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30703021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ke Li</creatorcontrib><creatorcontrib>Kaiyue Pang</creatorcontrib><creatorcontrib>Yi-Zhe Song</creatorcontrib><creatorcontrib>Tao Xiang</creatorcontrib><creatorcontrib>Hospedales, Timothy M.</creatorcontrib><creatorcontrib>Honggang Zhang</creatorcontrib><title>Toward Deep Universal Sketch Perceptual Grouper</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch perceptual grouper. That is, a grouper that can be applied to sketches of any category created with any drawing style and ability, to group constituent strokes/segments into semantically meaningful object parts. The first obstacle to achieving this goal is the lack of large-scale datasets with grouping annotation. To overcome this, we contribute the largest sketch perceptual grouping dataset to date, consisting of 20 000 unique sketches evenly distributed over 25 object categories. Furthermore, we propose a novel deep perceptual grouping model learned with both generative and discriminative losses. The generative loss improves the generalization ability of the model, while the discriminative loss guarantees both local and global grouping consistency. Extensive experiments demonstrate that the proposed grouper significantly outperforms the state-of-the-art competitors. In addition, we show that our grouper is useful for a number of sketch analysis tasks, including sketch semantic segmentation, synthesis, and fine-grained sketch-based image retrieval.</description><subject>Analytical models</subject><subject>Data models</subject><subject>dataset</subject><subject>deep grouping model</subject><subject>Image annotation</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Semantics</subject><subject>Sketch perceptual grouping</subject><subject>Sketches</subject><subject>Task analysis</subject><subject>Training</subject><subject>universal grouper</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3eBUEKXryknf1Kdo9StRYKFmzPS7KZYGraxN1E8d-7pbUHTzPMPO8wPIRcUxhRCnq8nC1GDKgeMaUllfKE9KkWNAIQ7DT0IJMooUL3yIX3awAqJI3PSY9DAhwY7ZPxsv5OXT58RGyGq235hc6n1fDtA1v7Plygs9i0XZhMXd016C7JWZFWHq8OdUBWz0_LyUs0f53OJg_zyHKl24gnmUiUlbwQuc1yodGKDMBaYTG3ofJY5JjmhVXcJpozLQuVp6AUU1nCCz4g9_u7jas_O_St2ZTeYlWlW6w7bxhNtNA8ZhDQu3_ouu7cNnxnGGMxjWXMRaBgT1lXe--wMI0rN6n7MRTMTqYJMs1OpjnIDJHbw-Eu22B-DPzZC8DNHigR8bhWMYslB_4LSox21w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ke Li</creator><creator>Kaiyue Pang</creator><creator>Yi-Zhe Song</creator><creator>Tao Xiang</creator><creator>Hospedales, Timothy M.</creator><creator>Honggang Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8287-6783</orcidid><orcidid>https://orcid.org/0000-0002-9739-7969</orcidid><orcidid>https://orcid.org/0000-0002-2530-1059</orcidid><orcidid>https://orcid.org/0000-0003-4867-7486</orcidid></search><sort><creationdate>20190701</creationdate><title>Toward Deep Universal Sketch Perceptual Grouper</title><author>Ke Li ; Kaiyue Pang ; Yi-Zhe Song ; Tao Xiang ; Hospedales, Timothy M. ; Honggang Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-37b478c53f4dcbd49ec4b00cc4cedc0cc364deadfc83c793295f8da08828b73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical models</topic><topic>Data models</topic><topic>dataset</topic><topic>deep grouping model</topic><topic>Image annotation</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Semantics</topic><topic>Sketch perceptual grouping</topic><topic>Sketches</topic><topic>Task analysis</topic><topic>Training</topic><topic>universal grouper</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke Li</creatorcontrib><creatorcontrib>Kaiyue Pang</creatorcontrib><creatorcontrib>Yi-Zhe Song</creatorcontrib><creatorcontrib>Tao Xiang</creatorcontrib><creatorcontrib>Hospedales, Timothy M.</creatorcontrib><creatorcontrib>Honggang Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke Li</au><au>Kaiyue Pang</au><au>Yi-Zhe Song</au><au>Tao Xiang</au><au>Hospedales, Timothy M.</au><au>Honggang Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Deep Universal Sketch Perceptual Grouper</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>28</volume><issue>7</issue><spage>3219</spage><epage>3231</epage><pages>3219-3231</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch perceptual grouper. That is, a grouper that can be applied to sketches of any category created with any drawing style and ability, to group constituent strokes/segments into semantically meaningful object parts. The first obstacle to achieving this goal is the lack of large-scale datasets with grouping annotation. To overcome this, we contribute the largest sketch perceptual grouping dataset to date, consisting of 20 000 unique sketches evenly distributed over 25 object categories. Furthermore, we propose a novel deep perceptual grouping model learned with both generative and discriminative losses. The generative loss improves the generalization ability of the model, while the discriminative loss guarantees both local and global grouping consistency. Extensive experiments demonstrate that the proposed grouper significantly outperforms the state-of-the-art competitors. In addition, we show that our grouper is useful for a number of sketch analysis tasks, including sketch semantic segmentation, synthesis, and fine-grained sketch-based image retrieval.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30703021</pmid><doi>10.1109/TIP.2019.2895155</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8287-6783</orcidid><orcidid>https://orcid.org/0000-0002-9739-7969</orcidid><orcidid>https://orcid.org/0000-0002-2530-1059</orcidid><orcidid>https://orcid.org/0000-0003-4867-7486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-07, Vol.28 (7), p.3219-3231
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2179493620
source IEEE Electronic Library (IEL) Journals
subjects Analytical models
Data models
dataset
deep grouping model
Image annotation
Image management
Image retrieval
Image segmentation
Semantics
Sketch perceptual grouping
Sketches
Task analysis
Training
universal grouper
Visualization
title Toward Deep Universal Sketch Perceptual Grouper
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Deep%20Universal%20Sketch%20Perceptual%20Grouper&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ke%20Li&rft.date=2019-07-01&rft.volume=28&rft.issue=7&rft.spage=3219&rft.epage=3231&rft.pages=3219-3231&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2895155&rft_dat=%3Cproquest_pubme%3E2179493620%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-37b478c53f4dcbd49ec4b00cc4cedc0cc364deadfc83c793295f8da08828b73f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2226165634&rft_id=info:pmid/30703021&rft_ieee_id=8626530&rfr_iscdi=true