Loading…
Isolation and characterization of CAC antenna proteins and photosystem I supercomplex from the cryptophytic alga Rhodomonas salina
In the present paper, we report an improved method combining sucrose density gradient with ion‐exchange chromatography for the isolation of pure chlorophyll a/c antenna proteins from the model cryptophytic alga Rhodomonas salina. Antennas were used for in vitro quenching experiments in the absence o...
Saved in:
Published in: | Physiologia plantarum 2019-05, Vol.166 (1), p.309-319 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, we report an improved method combining sucrose density gradient with ion‐exchange chromatography for the isolation of pure chlorophyll a/c antenna proteins from the model cryptophytic alga Rhodomonas salina. Antennas were used for in vitro quenching experiments in the absence of xanthophylls, showing that protein aggregation is a plausible mechanism behind non‐photochemical quenching in R. salina. From sucrose gradient, it was also possible to purify a functional photosystem I supercomplex, which was in turn characterized by steady‐state and time‐resolved fluorescence spectroscopy. R. salina photosystem I showed a remarkably fast photochemical trapping rate, similar to what recently reported for other red clade algae such as Chromera velia and Phaeodactylum tricornutum. The method reported therefore may also be suitable for other still partially unexplored algae, such as cryptophytes. |
---|---|
ISSN: | 0031-9317 1399-3054 |
DOI: | 10.1111/ppl.12928 |