Loading…
Numerical phase reduction beyond the first order approximation
We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that t...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2019-01, Vol.29 (1), p.011105-011105 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23 |
container_end_page | 011105 |
container_issue | 1 |
container_start_page | 011105 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 29 |
creator | Rosenblum, Michael Pikovsky, Arkady |
description | We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach. |
doi_str_mv | 10.1063/1.5079617 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179519637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179519637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiruuHvwDUvCiQtdM2yTNRZDFL1j0oueSNhO2S79MWnH_vVl3VRD0lDk8vDN5CTkGOgXK40uYMiokB7FDxkBTGQqeRrvrmSUhMEpH5MC5JaUUopjtk1FMBZXAojG5ehxqtGWhqqBbKIeBRT0Ufdk2QY6rttFBv8DAlNb1QWs12kB1nW3fy1qt0SHZM6pyeLR9J-Tl9uZ5dh_On-4eZtfzsEgS2YdaSq1yrlkimVEoFJMcTV5QnUZJWsQRCmA5GJ4gMMgFgFCpUSIS1IgUo3hCzja5fvfrgK7P6tIVWFWqwXZwWQRCMpA8Fp6e_qLLdrCNv84rnsaC8TTx6nyjCts6Z9FknfV_sqsMaLYuNYNsW6q3J9vEIa9Rf8uvFj242ABXlP1nL_-m_YnfWvsDs06b-AOH04xk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168375684</pqid></control><display><type>article</type><title>Numerical phase reduction beyond the first order approximation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rosenblum, Michael ; Pikovsky, Arkady</creator><creatorcontrib>Rosenblum, Michael ; Pikovsky, Arkady</creatorcontrib><description>We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5079617</identifier><identifier>PMID: 30709152</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computer simulation ; Coupling ; Oscillators</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-01, Vol.29 (1), p.011105-011105</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</citedby><cites>FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</cites><orcidid>0000-0002-3044-6121 ; 0000-0001-9682-7122 ; 0000000230446121 ; 0000000196827122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenblum, Michael</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><title>Numerical phase reduction beyond the first order approximation</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach.</description><subject>Computer simulation</subject><subject>Coupling</subject><subject>Oscillators</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiruuHvwDUvCiQtdM2yTNRZDFL1j0oueSNhO2S79MWnH_vVl3VRD0lDk8vDN5CTkGOgXK40uYMiokB7FDxkBTGQqeRrvrmSUhMEpH5MC5JaUUopjtk1FMBZXAojG5ehxqtGWhqqBbKIeBRT0Ufdk2QY6rttFBv8DAlNb1QWs12kB1nW3fy1qt0SHZM6pyeLR9J-Tl9uZ5dh_On-4eZtfzsEgS2YdaSq1yrlkimVEoFJMcTV5QnUZJWsQRCmA5GJ4gMMgFgFCpUSIS1IgUo3hCzja5fvfrgK7P6tIVWFWqwXZwWQRCMpA8Fp6e_qLLdrCNv84rnsaC8TTx6nyjCts6Z9FknfV_sqsMaLYuNYNsW6q3J9vEIa9Rf8uvFj242ABXlP1nL_-m_YnfWvsDs06b-AOH04xk</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Rosenblum, Michael</creator><creator>Pikovsky, Arkady</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3044-6121</orcidid><orcidid>https://orcid.org/0000-0001-9682-7122</orcidid><orcidid>https://orcid.org/0000000230446121</orcidid><orcidid>https://orcid.org/0000000196827122</orcidid></search><sort><creationdate>201901</creationdate><title>Numerical phase reduction beyond the first order approximation</title><author>Rosenblum, Michael ; Pikovsky, Arkady</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Coupling</topic><topic>Oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenblum, Michael</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenblum, Michael</au><au>Pikovsky, Arkady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical phase reduction beyond the first order approximation</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-01</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>011105</spage><epage>011105</epage><pages>011105-011105</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30709152</pmid><doi>10.1063/1.5079617</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3044-6121</orcidid><orcidid>https://orcid.org/0000-0001-9682-7122</orcidid><orcidid>https://orcid.org/0000000230446121</orcidid><orcidid>https://orcid.org/0000000196827122</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2019-01, Vol.29 (1), p.011105-011105 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179519637 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Computer simulation Coupling Oscillators |
title | Numerical phase reduction beyond the first order approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20phase%20reduction%20beyond%20the%20first%20order%20approximation&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Rosenblum,%20Michael&rft.date=2019-01&rft.volume=29&rft.issue=1&rft.spage=011105&rft.epage=011105&rft.pages=011105-011105&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5079617&rft_dat=%3Cproquest_pubme%3E2179519637%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2168375684&rft_id=info:pmid/30709152&rfr_iscdi=true |