Loading…

Numerical phase reduction beyond the first order approximation

We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that t...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2019-01, Vol.29 (1), p.011105-011105
Main Authors: Rosenblum, Michael, Pikovsky, Arkady
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23
cites cdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23
container_end_page 011105
container_issue 1
container_start_page 011105
container_title Chaos (Woodbury, N.Y.)
container_volume 29
creator Rosenblum, Michael
Pikovsky, Arkady
description We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach.
doi_str_mv 10.1063/1.5079617
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179519637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179519637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiruuHvwDUvCiQtdM2yTNRZDFL1j0oueSNhO2S79MWnH_vVl3VRD0lDk8vDN5CTkGOgXK40uYMiokB7FDxkBTGQqeRrvrmSUhMEpH5MC5JaUUopjtk1FMBZXAojG5ehxqtGWhqqBbKIeBRT0Ufdk2QY6rttFBv8DAlNb1QWs12kB1nW3fy1qt0SHZM6pyeLR9J-Tl9uZ5dh_On-4eZtfzsEgS2YdaSq1yrlkimVEoFJMcTV5QnUZJWsQRCmA5GJ4gMMgFgFCpUSIS1IgUo3hCzja5fvfrgK7P6tIVWFWqwXZwWQRCMpA8Fp6e_qLLdrCNv84rnsaC8TTx6nyjCts6Z9FknfV_sqsMaLYuNYNsW6q3J9vEIa9Rf8uvFj242ABXlP1nL_-m_YnfWvsDs06b-AOH04xk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168375684</pqid></control><display><type>article</type><title>Numerical phase reduction beyond the first order approximation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rosenblum, Michael ; Pikovsky, Arkady</creator><creatorcontrib>Rosenblum, Michael ; Pikovsky, Arkady</creatorcontrib><description>We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5079617</identifier><identifier>PMID: 30709152</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computer simulation ; Coupling ; Oscillators</subject><ispartof>Chaos (Woodbury, N.Y.), 2019-01, Vol.29 (1), p.011105-011105</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</citedby><cites>FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</cites><orcidid>0000-0002-3044-6121 ; 0000-0001-9682-7122 ; 0000000230446121 ; 0000000196827122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenblum, Michael</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><title>Numerical phase reduction beyond the first order approximation</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach.</description><subject>Computer simulation</subject><subject>Coupling</subject><subject>Oscillators</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiruuHvwDUvCiQtdM2yTNRZDFL1j0oueSNhO2S79MWnH_vVl3VRD0lDk8vDN5CTkGOgXK40uYMiokB7FDxkBTGQqeRrvrmSUhMEpH5MC5JaUUopjtk1FMBZXAojG5ehxqtGWhqqBbKIeBRT0Ufdk2QY6rttFBv8DAlNb1QWs12kB1nW3fy1qt0SHZM6pyeLR9J-Tl9uZ5dh_On-4eZtfzsEgS2YdaSq1yrlkimVEoFJMcTV5QnUZJWsQRCmA5GJ4gMMgFgFCpUSIS1IgUo3hCzja5fvfrgK7P6tIVWFWqwXZwWQRCMpA8Fp6e_qLLdrCNv84rnsaC8TTx6nyjCts6Z9FknfV_sqsMaLYuNYNsW6q3J9vEIa9Rf8uvFj242ABXlP1nL_-m_YnfWvsDs06b-AOH04xk</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Rosenblum, Michael</creator><creator>Pikovsky, Arkady</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3044-6121</orcidid><orcidid>https://orcid.org/0000-0001-9682-7122</orcidid><orcidid>https://orcid.org/0000000230446121</orcidid><orcidid>https://orcid.org/0000000196827122</orcidid></search><sort><creationdate>201901</creationdate><title>Numerical phase reduction beyond the first order approximation</title><author>Rosenblum, Michael ; Pikovsky, Arkady</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Coupling</topic><topic>Oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenblum, Michael</creatorcontrib><creatorcontrib>Pikovsky, Arkady</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenblum, Michael</au><au>Pikovsky, Arkady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical phase reduction beyond the first order approximation</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2019-01</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>011105</spage><epage>011105</epage><pages>011105-011105</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30709152</pmid><doi>10.1063/1.5079617</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3044-6121</orcidid><orcidid>https://orcid.org/0000-0001-9682-7122</orcidid><orcidid>https://orcid.org/0000000230446121</orcidid><orcidid>https://orcid.org/0000000196827122</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2019-01, Vol.29 (1), p.011105-011105
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_2179519637
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Computer simulation
Coupling
Oscillators
title Numerical phase reduction beyond the first order approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20phase%20reduction%20beyond%20the%20first%20order%20approximation&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Rosenblum,%20Michael&rft.date=2019-01&rft.volume=29&rft.issue=1&rft.spage=011105&rft.epage=011105&rft.pages=011105-011105&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5079617&rft_dat=%3Cproquest_pubme%3E2179519637%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-d99dab6d5495fae7a596efbc0d8248c32e715b1f64e151b7117a8fa7270f78e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2168375684&rft_id=info:pmid/30709152&rfr_iscdi=true