Loading…

Assessment of artery calcification in atherosclerosis with dynamic 18F-FDG-PET/CT imaging in elderly subjects

Glucose metabolism in atherosclerotic arteries has been shown to be an indicator of inflammation, which might be a precursor of plaque rupture. In this prospective study, we assessed the correlation between artery calcification and glucose metabolism by means of 18F-FDG PET/CT imaging in elderly sub...

Full description

Saved in:
Bibliographic Details
Published in:The International Journal of Cardiovascular Imaging 2019-05, Vol.35 (5), p.947-954
Main Authors: Al-enezi, Mamdouh S., Abdo, Redha-alla, Mokeddem, Mohamed Yazid, Slimani, Faiçal A. A., Khalil, Abdelouahed, Fulop, Tamas, Turcotte, Eric, Bentourkia, M’hamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glucose metabolism in atherosclerotic arteries has been shown to be an indicator of inflammation, which might be a precursor of plaque rupture. In this prospective study, we assessed the correlation between artery calcification and glucose metabolism by means of 18F-FDG PET/CT imaging in elderly subjects. Nineteen elderly subjects, with age ranging from 65 to 85 years, underwent CT and dynamic 18F-FDG-PET imaging. The artery calcification was determined with a threshold of 130 Hounsfield units. Intensity of calcification and ratio of calcification area to total artery area were classified in four sequential classes from CT images. The CT artery images were also classified as having single or multi-spot calcifications. Their respective glucose metabolism was assessed with fractional uptake rate (FUR). Factor analysis was used in this study to separate blood images from tissue to extract the blood time activity curves for FUR calculations. The artery images in PET data were corrected for partial volume effect. The total arterial segments analyzed were 1332, with 1085 without calcification (81%), 247 (19%) with calcification, and 94 segments were having multi-spot of calcifications. There was a statistically significant difference in FUR values between non-calcified to calcified segments and between subjects under medication to non-medication when comparing the subjects based on calcification area. No statistically significant differences of FUR were found between single spot as a function of intensity, while in the multi-spots, there was a statistically significant difference for all artery segments. Metabolism activity varies for non-calcified to calcified segments. Based on the metabolic activity represented by FUR, calcifications in multi-spots have different effects than in single spots.
ISSN:1569-5794
1573-0743
1875-8312
DOI:10.1007/s10554-019-01527-7