Loading…
Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine
Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), l...
Saved in:
Published in: | The Journal of chemical physics 2019-01, Vol.150 (4), p.044308-044308 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843 |
container_end_page | 044308 |
container_issue | 4 |
container_start_page | 044308 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Ling, Fengzi Li, Shuai Wang, Yanmei Wang, Pengfei Zhang, Bing |
description | Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states. |
doi_str_mv | 10.1063/1.5083681 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179523174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174019992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</originalsourceid><addsrcrecordid>eNp90F1LHDEUBuAglbpaL_wDMuBNK8z25GOSyaVIawXBG1svh2zmhI3OTsZkVrv_3qy7VRAsuQjkPLzkvIQcUZhSkPw7nVZQc1nTHTKhUOtSSQ2fyASA0VJLkHtkP6U7AKCKic9kj4MCzYSakNs_fhbN6ENvusKGOUbsLRa-L8Y55ofFEJJfj8uEHdoR2-LJPOJg7D2ORXDFMA9jwL_Wr0fDKvqFb32PX8iuM13Cw-19QH7__HFz_qu8ur64PD-7Ki2v-VgKV9NWK2QzqWcWnADXiopJVC3X3GpT1c5WmruW5d_XkmmRD7dGMCtVLfgB-brJHWJ4WGIam4VPFrvO9BiWqWFU6Ypxqtb05B29C8uY935RAqjWmmX1baNsDClFdM2QdzJx1VBo1m03tNm2ne3xNnE5W2D7Kv_Vm8HpBqTcz0vL_037ED-G-AaboXX8GSXIlVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174019992</pqid></control><display><type>article</type><title>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Ling, Fengzi ; Li, Shuai ; Wang, Yanmei ; Wang, Pengfei ; Zhang, Bing</creator><creatorcontrib>Ling, Fengzi ; Li, Shuai ; Wang, Yanmei ; Wang, Pengfei ; Zhang, Bing</creatorcontrib><description>Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5083681</identifier><identifier>PMID: 30709247</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherence ; Composition ; Electron states ; Excitation ; Fourier transforms ; Physics ; Rydberg states ; Superposition (mathematics)</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (4), p.044308-044308</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</citedby><cites>FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</cites><orcidid>0000-0001-8724-1752 ; 0000000187241752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5083681$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Fengzi</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Yanmei</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><title>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.</description><subject>Coherence</subject><subject>Composition</subject><subject>Electron states</subject><subject>Excitation</subject><subject>Fourier transforms</subject><subject>Physics</subject><subject>Rydberg states</subject><subject>Superposition (mathematics)</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90F1LHDEUBuAglbpaL_wDMuBNK8z25GOSyaVIawXBG1svh2zmhI3OTsZkVrv_3qy7VRAsuQjkPLzkvIQcUZhSkPw7nVZQc1nTHTKhUOtSSQ2fyASA0VJLkHtkP6U7AKCKic9kj4MCzYSakNs_fhbN6ENvusKGOUbsLRa-L8Y55ofFEJJfj8uEHdoR2-LJPOJg7D2ORXDFMA9jwL_Wr0fDKvqFb32PX8iuM13Cw-19QH7__HFz_qu8ur64PD-7Ki2v-VgKV9NWK2QzqWcWnADXiopJVC3X3GpT1c5WmruW5d_XkmmRD7dGMCtVLfgB-brJHWJ4WGIam4VPFrvO9BiWqWFU6Ypxqtb05B29C8uY935RAqjWmmX1baNsDClFdM2QdzJx1VBo1m03tNm2ne3xNnE5W2D7Kv_Vm8HpBqTcz0vL_037ED-G-AaboXX8GSXIlVA</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Ling, Fengzi</creator><creator>Li, Shuai</creator><creator>Wang, Yanmei</creator><creator>Wang, Pengfei</creator><creator>Zhang, Bing</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8724-1752</orcidid><orcidid>https://orcid.org/0000000187241752</orcidid></search><sort><creationdate>20190128</creationdate><title>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</title><author>Ling, Fengzi ; Li, Shuai ; Wang, Yanmei ; Wang, Pengfei ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coherence</topic><topic>Composition</topic><topic>Electron states</topic><topic>Excitation</topic><topic>Fourier transforms</topic><topic>Physics</topic><topic>Rydberg states</topic><topic>Superposition (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Fengzi</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Yanmei</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Fengzi</au><au>Li, Shuai</au><au>Wang, Yanmei</au><au>Wang, Pengfei</au><au>Zhang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>150</volume><issue>4</issue><spage>044308</spage><epage>044308</epage><pages>044308-044308</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30709247</pmid><doi>10.1063/1.5083681</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8724-1752</orcidid><orcidid>https://orcid.org/0000000187241752</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-01, Vol.150 (4), p.044308-044308 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179523174 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Coherence Composition Electron states Excitation Fourier transforms Physics Rydberg states Superposition (mathematics) |
title | Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibrational%20coherence%20in%20the%20composition-selected%20wavepacket%20of%20photoexcited%20pyrimidine&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ling,%20Fengzi&rft.date=2019-01-28&rft.volume=150&rft.issue=4&rft.spage=044308&rft.epage=044308&rft.pages=044308-044308&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5083681&rft_dat=%3Cproquest_scita%3E2174019992%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174019992&rft_id=info:pmid/30709247&rfr_iscdi=true |