Loading…

Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine

Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), l...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2019-01, Vol.150 (4), p.044308-044308
Main Authors: Ling, Fengzi, Li, Shuai, Wang, Yanmei, Wang, Pengfei, Zhang, Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843
cites cdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843
container_end_page 044308
container_issue 4
container_start_page 044308
container_title The Journal of chemical physics
container_volume 150
creator Ling, Fengzi
Li, Shuai
Wang, Yanmei
Wang, Pengfei
Zhang, Bing
description Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.
doi_str_mv 10.1063/1.5083681
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179523174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174019992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</originalsourceid><addsrcrecordid>eNp90F1LHDEUBuAglbpaL_wDMuBNK8z25GOSyaVIawXBG1svh2zmhI3OTsZkVrv_3qy7VRAsuQjkPLzkvIQcUZhSkPw7nVZQc1nTHTKhUOtSSQ2fyASA0VJLkHtkP6U7AKCKic9kj4MCzYSakNs_fhbN6ENvusKGOUbsLRa-L8Y55ofFEJJfj8uEHdoR2-LJPOJg7D2ORXDFMA9jwL_Wr0fDKvqFb32PX8iuM13Cw-19QH7__HFz_qu8ur64PD-7Ki2v-VgKV9NWK2QzqWcWnADXiopJVC3X3GpT1c5WmruW5d_XkmmRD7dGMCtVLfgB-brJHWJ4WGIam4VPFrvO9BiWqWFU6Ypxqtb05B29C8uY935RAqjWmmX1baNsDClFdM2QdzJx1VBo1m03tNm2ne3xNnE5W2D7Kv_Vm8HpBqTcz0vL_037ED-G-AaboXX8GSXIlVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174019992</pqid></control><display><type>article</type><title>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Ling, Fengzi ; Li, Shuai ; Wang, Yanmei ; Wang, Pengfei ; Zhang, Bing</creator><creatorcontrib>Ling, Fengzi ; Li, Shuai ; Wang, Yanmei ; Wang, Pengfei ; Zhang, Bing</creatorcontrib><description>Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5083681</identifier><identifier>PMID: 30709247</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coherence ; Composition ; Electron states ; Excitation ; Fourier transforms ; Physics ; Rydberg states ; Superposition (mathematics)</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (4), p.044308-044308</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</citedby><cites>FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</cites><orcidid>0000-0001-8724-1752 ; 0000000187241752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5083681$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30709247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ling, Fengzi</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Yanmei</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><title>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.</description><subject>Coherence</subject><subject>Composition</subject><subject>Electron states</subject><subject>Excitation</subject><subject>Fourier transforms</subject><subject>Physics</subject><subject>Rydberg states</subject><subject>Superposition (mathematics)</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90F1LHDEUBuAglbpaL_wDMuBNK8z25GOSyaVIawXBG1svh2zmhI3OTsZkVrv_3qy7VRAsuQjkPLzkvIQcUZhSkPw7nVZQc1nTHTKhUOtSSQ2fyASA0VJLkHtkP6U7AKCKic9kj4MCzYSakNs_fhbN6ENvusKGOUbsLRa-L8Y55ofFEJJfj8uEHdoR2-LJPOJg7D2ORXDFMA9jwL_Wr0fDKvqFb32PX8iuM13Cw-19QH7__HFz_qu8ur64PD-7Ki2v-VgKV9NWK2QzqWcWnADXiopJVC3X3GpT1c5WmruW5d_XkmmRD7dGMCtVLfgB-brJHWJ4WGIam4VPFrvO9BiWqWFU6Ypxqtb05B29C8uY935RAqjWmmX1baNsDClFdM2QdzJx1VBo1m03tNm2ne3xNnE5W2D7Kv_Vm8HpBqTcz0vL_037ED-G-AaboXX8GSXIlVA</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Ling, Fengzi</creator><creator>Li, Shuai</creator><creator>Wang, Yanmei</creator><creator>Wang, Pengfei</creator><creator>Zhang, Bing</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8724-1752</orcidid><orcidid>https://orcid.org/0000000187241752</orcidid></search><sort><creationdate>20190128</creationdate><title>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</title><author>Ling, Fengzi ; Li, Shuai ; Wang, Yanmei ; Wang, Pengfei ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coherence</topic><topic>Composition</topic><topic>Electron states</topic><topic>Excitation</topic><topic>Fourier transforms</topic><topic>Physics</topic><topic>Rydberg states</topic><topic>Superposition (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Fengzi</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Yanmei</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Fengzi</au><au>Li, Shuai</au><au>Wang, Yanmei</au><au>Wang, Pengfei</au><au>Zhang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2019-01-28</date><risdate>2019</risdate><volume>150</volume><issue>4</issue><spage>044308</spage><epage>044308</epage><pages>044308-044308</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Coherent wavepacket motion in photoexcited pyrimidine has been initiated and visualized in real time using femtosecond time-resolved ion-yield spectroscopy. A coherent superposition of at least four low-frequency Frank-Condon (FC) active modes is created in the first excited electronic state (S1), leading to a vibrational wavepacket. Its composition is manipulated experimentally by tuning the excitation wavelength in the range 309–313 nm to populate the selected vibrational levels. Interference among these vibrational levels is directly characterized by a clear quantum beat superimposed on a single-exponential decay. Fourier transform analysis of the wavelength-dependent transients shows modulation at different frequencies, providing a direct signature of multi-mode vibrational coherence resulting from the coherent excitation process. The sensitivity of the parent-ion transient to the vibrational wavepacket dynamics probably arises because different modes are connected by variable FC factors to the 3s and 3p Rydberg states.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30709247</pmid><doi>10.1063/1.5083681</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8724-1752</orcidid><orcidid>https://orcid.org/0000000187241752</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-01, Vol.150 (4), p.044308-044308
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2179523174
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Coherence
Composition
Electron states
Excitation
Fourier transforms
Physics
Rydberg states
Superposition (mathematics)
title Vibrational coherence in the composition-selected wavepacket of photoexcited pyrimidine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibrational%20coherence%20in%20the%20composition-selected%20wavepacket%20of%20photoexcited%20pyrimidine&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ling,%20Fengzi&rft.date=2019-01-28&rft.volume=150&rft.issue=4&rft.spage=044308&rft.epage=044308&rft.pages=044308-044308&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5083681&rft_dat=%3Cproquest_scita%3E2174019992%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-4f81d97e2b69bc0f40fd4526e7d393c9a58fc593fd2000862949493ca42c67843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174019992&rft_id=info:pmid/30709247&rfr_iscdi=true