Loading…

Single‐Molecule Force Measurement Guides the Design of Multivalent Ligands with Picomolar Affinity

Interaction of multiple entities and receptors, or multivalency is widely applied to achieve high affinity ligands for diagnostic and therapeutic purposes. However, lack of knowledge on receptor distribution in living subjects remains a challenge for rational structure design. Herein, we develop a f...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2019-04, Vol.58 (16), p.5272-5276
Main Authors: Yang, Zhen, Jiang, Sheng, Li, Feng, Qiu, Yatao, Gu, Jianhua, Pettigrew, Roderic I., Ferrari, Mauro, Hamilton, Dale J., Li, Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interaction of multiple entities and receptors, or multivalency is widely applied to achieve high affinity ligands for diagnostic and therapeutic purposes. However, lack of knowledge on receptor distribution in living subjects remains a challenge for rational structure design. Herein, we develop a force measurement platform to probe the distribution and separation of the cell surface vascular endothelial growth factor receptors (VEGFR) in live cells, and use this to assess the geometry of appropriate linkers for distinct multivalent binding modes. A tetravalent lead ZD‐4, which was developed from an antitumor drug ZD6474 (Vandetanib) with combined hybrid binding effects, yielded a 2000‐fold improvement in the binding affinity to VEGFR with IC50 value of 25 pm. We confirmed the improved affinity by the associated increase of tumor uptake in the VEGFR‐targeting positron emission tomography (PET) imaging using U87 tumor xenograft mouse model. Measure for measure: An AFM force measurement platform is used to probe the actual distribution and separation of cell‐surface vascular endothelial growth factor receptors (VEGFR) in live cells. This data is used to assess the geometry of appropriate linkers for distinct multivalent binding modes. Efficient hybrid multivalent design leads to highly increased uptake by tumors.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201814347