Loading…

Risk management, signal processing and econometrics: A new tool for forecasting the risk of disease outbreaks

•Risk management, signal processing and econometrics based novel approach for forecasting the risk of disease emergence.•We propose risk quantification using the Value at Risk criterion.•Multivariate Singular Spectrum Analysis is combined with Quantile Regression (MSSA-QR) in a two staged model.•The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical biology 2019-04, Vol.467, p.57-62
Main Authors: Hassani, Hossein, Yeganegi, Mohammad Reza, Silva, Emmanuel Sirimal, Ghodsi, Fatemeh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-d77fdbee734f73df3e70ec15237b8661ab85fb0e00f2e5f9c53755135550bbfa3
cites cdi_FETCH-LOGICAL-c400t-d77fdbee734f73df3e70ec15237b8661ab85fb0e00f2e5f9c53755135550bbfa3
container_end_page 62
container_issue
container_start_page 57
container_title Journal of theoretical biology
container_volume 467
creator Hassani, Hossein
Yeganegi, Mohammad Reza
Silva, Emmanuel Sirimal
Ghodsi, Fatemeh
description •Risk management, signal processing and econometrics based novel approach for forecasting the risk of disease emergence.•We propose risk quantification using the Value at Risk criterion.•Multivariate Singular Spectrum Analysis is combined with Quantile Regression (MSSA-QR) in a two staged model.•The MSSA-QR model exceeds in forecasting worst case scenarios for less common waterborne diseases.•Forecasting of more common diseases requires the inclusion of socio-economic and environmental indicators. This paper takes a novel approach for forecasting the risk of disease emergence by combining risk management, signal processing and econometrics to develop a new forecasting approach. We propose quantifying risk using the Value at Risk criterion and then propose a two staged model based on Multivariate Singular Spectrum Analysis and Quantile Regression (MSSA-QR model). The proposed risk measure (PLVaR) and forecasting model (MSSA-QR) is used to forecast the worst cases of waterborne disease outbreaks in 22 European and North American countries based on socio-economic and environmental indicators. The results show that the proposed method perfectly forecasts the worst case scenario for less common waterborne diseases whilst the forecasting of more common diseases requires more socio-economic and environmental indicators.
doi_str_mv 10.1016/j.jtbi.2019.01.032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2183185364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519319300499</els_id><sourcerecordid>2183185364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d77fdbee734f73df3e70ec15237b8661ab85fb0e00f2e5f9c53755135550bbfa3</originalsourceid><addsrcrecordid>eNp9kE1v1TAQRS0Eoo_CH2CBvGRBwjiO4wSxqSo-KlVCqmBt2c744dckLh4_UP89iV5h2cVoNude6R7GXguoBYju_aE-FBfrBsRQg6hBNk_YTsCgql614inbATRNpcQgz9gLogMADK3snrMzCVoqLfWOzTeRbvlsF7vHGZfyjlPcL3bidzl5JIrLnttl5OjTkmYsOXr6wC_4gn94SWniIeXt0FsqG1x-Is9bZwp8jISWkKdjcRntLb1kz4KdCF89_HP24_On75dfq-tvX64uL64r3wKUatQ6jA5RyzZoOQaJGtAL1Ujt-q4T1vUqOECA0KAKg1dSKyWkUgqcC1aes7en3nXFryNSMXMkj9NkF0xHMo3opeiV7NoVbU6oz4koYzB3Oc423xsBZtNsDmbTbDbNBoRZNa-hNw_9Rzfj-D_yz-sKfDwBuK78HTEb8hEXj2NcVRUzpvhY_1_p1o-3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183185364</pqid></control><display><type>article</type><title>Risk management, signal processing and econometrics: A new tool for forecasting the risk of disease outbreaks</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hassani, Hossein ; Yeganegi, Mohammad Reza ; Silva, Emmanuel Sirimal ; Ghodsi, Fatemeh</creator><creatorcontrib>Hassani, Hossein ; Yeganegi, Mohammad Reza ; Silva, Emmanuel Sirimal ; Ghodsi, Fatemeh</creatorcontrib><description>•Risk management, signal processing and econometrics based novel approach for forecasting the risk of disease emergence.•We propose risk quantification using the Value at Risk criterion.•Multivariate Singular Spectrum Analysis is combined with Quantile Regression (MSSA-QR) in a two staged model.•The MSSA-QR model exceeds in forecasting worst case scenarios for less common waterborne diseases.•Forecasting of more common diseases requires the inclusion of socio-economic and environmental indicators. This paper takes a novel approach for forecasting the risk of disease emergence by combining risk management, signal processing and econometrics to develop a new forecasting approach. We propose quantifying risk using the Value at Risk criterion and then propose a two staged model based on Multivariate Singular Spectrum Analysis and Quantile Regression (MSSA-QR model). The proposed risk measure (PLVaR) and forecasting model (MSSA-QR) is used to forecast the worst cases of waterborne disease outbreaks in 22 European and North American countries based on socio-economic and environmental indicators. The results show that the proposed method perfectly forecasts the worst case scenario for less common waterborne diseases whilst the forecasting of more common diseases requires more socio-economic and environmental indicators.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2019.01.032</identifier><identifier>PMID: 30735737</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Disease ; Forecasting ; Multivariate singular spectrum analysis ; Outbreaks ; Quantile regression ; Value at risk</subject><ispartof>Journal of theoretical biology, 2019-04, Vol.467, p.57-62</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d77fdbee734f73df3e70ec15237b8661ab85fb0e00f2e5f9c53755135550bbfa3</citedby><cites>FETCH-LOGICAL-c400t-d77fdbee734f73df3e70ec15237b8661ab85fb0e00f2e5f9c53755135550bbfa3</cites><orcidid>0000-0003-0897-8663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30735737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hassani, Hossein</creatorcontrib><creatorcontrib>Yeganegi, Mohammad Reza</creatorcontrib><creatorcontrib>Silva, Emmanuel Sirimal</creatorcontrib><creatorcontrib>Ghodsi, Fatemeh</creatorcontrib><title>Risk management, signal processing and econometrics: A new tool for forecasting the risk of disease outbreaks</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Risk management, signal processing and econometrics based novel approach for forecasting the risk of disease emergence.•We propose risk quantification using the Value at Risk criterion.•Multivariate Singular Spectrum Analysis is combined with Quantile Regression (MSSA-QR) in a two staged model.•The MSSA-QR model exceeds in forecasting worst case scenarios for less common waterborne diseases.•Forecasting of more common diseases requires the inclusion of socio-economic and environmental indicators. This paper takes a novel approach for forecasting the risk of disease emergence by combining risk management, signal processing and econometrics to develop a new forecasting approach. We propose quantifying risk using the Value at Risk criterion and then propose a two staged model based on Multivariate Singular Spectrum Analysis and Quantile Regression (MSSA-QR model). The proposed risk measure (PLVaR) and forecasting model (MSSA-QR) is used to forecast the worst cases of waterborne disease outbreaks in 22 European and North American countries based on socio-economic and environmental indicators. The results show that the proposed method perfectly forecasts the worst case scenario for less common waterborne diseases whilst the forecasting of more common diseases requires more socio-economic and environmental indicators.</description><subject>Disease</subject><subject>Forecasting</subject><subject>Multivariate singular spectrum analysis</subject><subject>Outbreaks</subject><subject>Quantile regression</subject><subject>Value at risk</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1TAQRS0Eoo_CH2CBvGRBwjiO4wSxqSo-KlVCqmBt2c744dckLh4_UP89iV5h2cVoNude6R7GXguoBYju_aE-FBfrBsRQg6hBNk_YTsCgql614inbATRNpcQgz9gLogMADK3snrMzCVoqLfWOzTeRbvlsF7vHGZfyjlPcL3bidzl5JIrLnttl5OjTkmYsOXr6wC_4gn94SWniIeXt0FsqG1x-Is9bZwp8jISWkKdjcRntLb1kz4KdCF89_HP24_On75dfq-tvX64uL64r3wKUatQ6jA5RyzZoOQaJGtAL1Ujt-q4T1vUqOECA0KAKg1dSKyWkUgqcC1aes7en3nXFryNSMXMkj9NkF0xHMo3opeiV7NoVbU6oz4koYzB3Oc423xsBZtNsDmbTbDbNBoRZNa-hNw_9Rzfj-D_yz-sKfDwBuK78HTEb8hEXj2NcVRUzpvhY_1_p1o-3</recordid><startdate>20190421</startdate><enddate>20190421</enddate><creator>Hassani, Hossein</creator><creator>Yeganegi, Mohammad Reza</creator><creator>Silva, Emmanuel Sirimal</creator><creator>Ghodsi, Fatemeh</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0897-8663</orcidid></search><sort><creationdate>20190421</creationdate><title>Risk management, signal processing and econometrics: A new tool for forecasting the risk of disease outbreaks</title><author>Hassani, Hossein ; Yeganegi, Mohammad Reza ; Silva, Emmanuel Sirimal ; Ghodsi, Fatemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d77fdbee734f73df3e70ec15237b8661ab85fb0e00f2e5f9c53755135550bbfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Disease</topic><topic>Forecasting</topic><topic>Multivariate singular spectrum analysis</topic><topic>Outbreaks</topic><topic>Quantile regression</topic><topic>Value at risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassani, Hossein</creatorcontrib><creatorcontrib>Yeganegi, Mohammad Reza</creatorcontrib><creatorcontrib>Silva, Emmanuel Sirimal</creatorcontrib><creatorcontrib>Ghodsi, Fatemeh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassani, Hossein</au><au>Yeganegi, Mohammad Reza</au><au>Silva, Emmanuel Sirimal</au><au>Ghodsi, Fatemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk management, signal processing and econometrics: A new tool for forecasting the risk of disease outbreaks</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2019-04-21</date><risdate>2019</risdate><volume>467</volume><spage>57</spage><epage>62</epage><pages>57-62</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•Risk management, signal processing and econometrics based novel approach for forecasting the risk of disease emergence.•We propose risk quantification using the Value at Risk criterion.•Multivariate Singular Spectrum Analysis is combined with Quantile Regression (MSSA-QR) in a two staged model.•The MSSA-QR model exceeds in forecasting worst case scenarios for less common waterborne diseases.•Forecasting of more common diseases requires the inclusion of socio-economic and environmental indicators. This paper takes a novel approach for forecasting the risk of disease emergence by combining risk management, signal processing and econometrics to develop a new forecasting approach. We propose quantifying risk using the Value at Risk criterion and then propose a two staged model based on Multivariate Singular Spectrum Analysis and Quantile Regression (MSSA-QR model). The proposed risk measure (PLVaR) and forecasting model (MSSA-QR) is used to forecast the worst cases of waterborne disease outbreaks in 22 European and North American countries based on socio-economic and environmental indicators. The results show that the proposed method perfectly forecasts the worst case scenario for less common waterborne diseases whilst the forecasting of more common diseases requires more socio-economic and environmental indicators.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30735737</pmid><doi>10.1016/j.jtbi.2019.01.032</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0897-8663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2019-04, Vol.467, p.57-62
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_2183185364
source ScienceDirect Freedom Collection 2022-2024
subjects Disease
Forecasting
Multivariate singular spectrum analysis
Outbreaks
Quantile regression
Value at risk
title Risk management, signal processing and econometrics: A new tool for forecasting the risk of disease outbreaks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20management,%20signal%20processing%20and%20econometrics:%20A%20new%20tool%20for%20forecasting%20the%20risk%20of%20disease%20outbreaks&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Hassani,%20Hossein&rft.date=2019-04-21&rft.volume=467&rft.spage=57&rft.epage=62&rft.pages=57-62&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2019.01.032&rft_dat=%3Cproquest_cross%3E2183185364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-d77fdbee734f73df3e70ec15237b8661ab85fb0e00f2e5f9c53755135550bbfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183185364&rft_id=info:pmid/30735737&rfr_iscdi=true