Loading…
A high-rate and long-life organic–oxygen battery
Alkali metal–oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethy...
Saved in:
Published in: | Nature materials 2019-04, Vol.18 (4), p.390-396 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-c352884c0563c7900e314fb90af608920dd45fb28ecf38542a5fc05191cdf4fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-c352884c0563c7900e314fb90af608920dd45fb28ecf38542a5fc05191cdf4fc3 |
container_end_page | 396 |
container_issue | 4 |
container_start_page | 390 |
container_title | Nature materials |
container_volume | 18 |
creator | Cong, Guangtao Wang, Wanwan Lai, Nien-Chu Liang, Zhuojian Lu, Yi-Chun |
description | Alkali metal–oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode. The proposed potassium biphenyl complex–oxygen battery exhibits an unprecedented cycle life (3,000 cycles) with a superior average coulombic efficiency of more than 99.84% at a high current density of 4.0 mA cm
−2
. We further reduce the redox potential of biphenyl by adding the electron-donating methyl group to the benzene ring, which successfully achieved a redox potential of 0.14 V versus K/K
+
. This demonstrates the direction and opportunities to further improve the cell voltage and energy density of the alkali-metal organic–oxygen batteries.
Alkali metal–oxygen batteries promise high energy densities but suffer from low rate capability and cycling due to metal anodes. A high-rate and long-life oxygen battery with a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode is reported. |
doi_str_mv | 10.1038/s41563-019-0286-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2183645841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194568516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-c352884c0563c7900e314fb90af608920dd45fb28ecf38542a5fc05191cdf4fc3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MotlYfwIssePESzWSTbPZYiv-g4EXPIZtNtlu2uzXZBXvzHXxDn8SUVgXB0wzMN78ZPoTOgVwDSeVNYMBFignkmFApcHaAxsAygZkQ5HDfA1A6QichLAmhwLk4RqOUZIwSycaITpNFXS2w171NdFsmTddWuKmdTTpf6bY2n-8f3dumsm1S6L63fnOKjpxugj3b1wl6ubt9nj3g-dP942w6x4YB9NiknErJDIkvmiwnxKbAXJET7QSROSVlybgrqLTGpZIzqrmLMORgSsecSSfoape79t3rYEOvVnUwtml0a7shKAoyFYxLBhG9_IMuu8G38btI5YwLyUFECnaU8V0I3jq19vVK-40CorZC1U6oikLVVqjK4s7FPnkoVrb82fg2GAG6A0IctZX1v6f_T_0CXLF-0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194568516</pqid></control><display><type>article</type><title>A high-rate and long-life organic–oxygen battery</title><source>Nature_系列刊</source><creator>Cong, Guangtao ; Wang, Wanwan ; Lai, Nien-Chu ; Liang, Zhuojian ; Lu, Yi-Chun</creator><creatorcontrib>Cong, Guangtao ; Wang, Wanwan ; Lai, Nien-Chu ; Liang, Zhuojian ; Lu, Yi-Chun</creatorcontrib><description>Alkali metal–oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode. The proposed potassium biphenyl complex–oxygen battery exhibits an unprecedented cycle life (3,000 cycles) with a superior average coulombic efficiency of more than 99.84% at a high current density of 4.0 mA cm
−2
. We further reduce the redox potential of biphenyl by adding the electron-donating methyl group to the benzene ring, which successfully achieved a redox potential of 0.14 V versus K/K
+
. This demonstrates the direction and opportunities to further improve the cell voltage and energy density of the alkali-metal organic–oxygen batteries.
Alkali metal–oxygen batteries promise high energy densities but suffer from low rate capability and cycling due to metal anodes. A high-rate and long-life oxygen battery with a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode is reported.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0286-7</identifier><identifier>PMID: 30742084</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/299/891 ; 639/638/161 ; Alkali metals ; Anodes ; Battery cycles ; Benzene ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrode potentials ; Flux density ; Gravimetry ; Hazards ; Materials Science ; Metal air batteries ; Nanotechnology ; Optical and Electronic Materials ; Oxygen ; Potassium ; Redox potential</subject><ispartof>Nature materials, 2019-04, Vol.18 (4), p.390-396</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-c352884c0563c7900e314fb90af608920dd45fb28ecf38542a5fc05191cdf4fc3</citedby><cites>FETCH-LOGICAL-c411t-c352884c0563c7900e314fb90af608920dd45fb28ecf38542a5fc05191cdf4fc3</cites><orcidid>0000-0003-1607-1615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30742084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cong, Guangtao</creatorcontrib><creatorcontrib>Wang, Wanwan</creatorcontrib><creatorcontrib>Lai, Nien-Chu</creatorcontrib><creatorcontrib>Liang, Zhuojian</creatorcontrib><creatorcontrib>Lu, Yi-Chun</creatorcontrib><title>A high-rate and long-life organic–oxygen battery</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Alkali metal–oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode. The proposed potassium biphenyl complex–oxygen battery exhibits an unprecedented cycle life (3,000 cycles) with a superior average coulombic efficiency of more than 99.84% at a high current density of 4.0 mA cm
−2
. We further reduce the redox potential of biphenyl by adding the electron-donating methyl group to the benzene ring, which successfully achieved a redox potential of 0.14 V versus K/K
+
. This demonstrates the direction and opportunities to further improve the cell voltage and energy density of the alkali-metal organic–oxygen batteries.
Alkali metal–oxygen batteries promise high energy densities but suffer from low rate capability and cycling due to metal anodes. A high-rate and long-life oxygen battery with a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode is reported.</description><subject>119/118</subject><subject>639/301/299/891</subject><subject>639/638/161</subject><subject>Alkali metals</subject><subject>Anodes</subject><subject>Battery cycles</subject><subject>Benzene</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrode potentials</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>Hazards</subject><subject>Materials Science</subject><subject>Metal air batteries</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen</subject><subject>Potassium</subject><subject>Redox potential</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQh4MotlYfwIssePESzWSTbPZYiv-g4EXPIZtNtlu2uzXZBXvzHXxDn8SUVgXB0wzMN78ZPoTOgVwDSeVNYMBFignkmFApcHaAxsAygZkQ5HDfA1A6QichLAmhwLk4RqOUZIwSycaITpNFXS2w171NdFsmTddWuKmdTTpf6bY2n-8f3dumsm1S6L63fnOKjpxugj3b1wl6ubt9nj3g-dP942w6x4YB9NiknErJDIkvmiwnxKbAXJET7QSROSVlybgrqLTGpZIzqrmLMORgSsecSSfoape79t3rYEOvVnUwtml0a7shKAoyFYxLBhG9_IMuu8G38btI5YwLyUFECnaU8V0I3jq19vVK-40CorZC1U6oikLVVqjK4s7FPnkoVrb82fg2GAG6A0IctZX1v6f_T_0CXLF-0g</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Cong, Guangtao</creator><creator>Wang, Wanwan</creator><creator>Lai, Nien-Chu</creator><creator>Liang, Zhuojian</creator><creator>Lu, Yi-Chun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1607-1615</orcidid></search><sort><creationdate>20190401</creationdate><title>A high-rate and long-life organic–oxygen battery</title><author>Cong, Guangtao ; Wang, Wanwan ; Lai, Nien-Chu ; Liang, Zhuojian ; Lu, Yi-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-c352884c0563c7900e314fb90af608920dd45fb28ecf38542a5fc05191cdf4fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>639/301/299/891</topic><topic>639/638/161</topic><topic>Alkali metals</topic><topic>Anodes</topic><topic>Battery cycles</topic><topic>Benzene</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrode potentials</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>Hazards</topic><topic>Materials Science</topic><topic>Metal air batteries</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen</topic><topic>Potassium</topic><topic>Redox potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Guangtao</creatorcontrib><creatorcontrib>Wang, Wanwan</creatorcontrib><creatorcontrib>Lai, Nien-Chu</creatorcontrib><creatorcontrib>Liang, Zhuojian</creatorcontrib><creatorcontrib>Lu, Yi-Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Guangtao</au><au>Wang, Wanwan</au><au>Lai, Nien-Chu</au><au>Liang, Zhuojian</au><au>Lu, Yi-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-rate and long-life organic–oxygen battery</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>18</volume><issue>4</issue><spage>390</spage><epage>396</epage><pages>390-396</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Alkali metal–oxygen batteries promise high gravimetric energy densities but suffer from low rate capability, poor cycle life and safety hazards associated with metal anodes. Here we describe a safe, high-rate and long-life oxygen battery that exploits a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode. The proposed potassium biphenyl complex–oxygen battery exhibits an unprecedented cycle life (3,000 cycles) with a superior average coulombic efficiency of more than 99.84% at a high current density of 4.0 mA cm
−2
. We further reduce the redox potential of biphenyl by adding the electron-donating methyl group to the benzene ring, which successfully achieved a redox potential of 0.14 V versus K/K
+
. This demonstrates the direction and opportunities to further improve the cell voltage and energy density of the alkali-metal organic–oxygen batteries.
Alkali metal–oxygen batteries promise high energy densities but suffer from low rate capability and cycling due to metal anodes. A high-rate and long-life oxygen battery with a potassium biphenyl complex anode and a dimethylsulfoxide-mediated potassium superoxide cathode is reported.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30742084</pmid><doi>10.1038/s41563-019-0286-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1607-1615</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2019-04, Vol.18 (4), p.390-396 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2183645841 |
source | Nature_系列刊 |
subjects | 119/118 639/301/299/891 639/638/161 Alkali metals Anodes Battery cycles Benzene Biomaterials Chemistry and Materials Science Condensed Matter Physics Electrode potentials Flux density Gravimetry Hazards Materials Science Metal air batteries Nanotechnology Optical and Electronic Materials Oxygen Potassium Redox potential |
title | A high-rate and long-life organic–oxygen battery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-rate%20and%20long-life%20organic%E2%80%93oxygen%20battery&rft.jtitle=Nature%20materials&rft.au=Cong,%20Guangtao&rft.date=2019-04-01&rft.volume=18&rft.issue=4&rft.spage=390&rft.epage=396&rft.pages=390-396&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0286-7&rft_dat=%3Cproquest_cross%3E2194568516%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-c352884c0563c7900e314fb90af608920dd45fb28ecf38542a5fc05191cdf4fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194568516&rft_id=info:pmid/30742084&rfr_iscdi=true |