Loading…

Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer

In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor ( D – A ) and protein bridge subspaces, and a two-state system is defined for the D – A subspace. Löwdin partitioning is used to perform the two-state reductions necessary to comput...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling 2019-03, Vol.25 (3), p.64-9, Article 64
Main Authors: de Andrade, P. C. P., Guerra, J. C. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3
container_end_page 9
container_issue 3
container_start_page 64
container_title Journal of molecular modeling
container_volume 25
creator de Andrade, P. C. P.
Guerra, J. C. O.
description In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor ( D – A ) and protein bridge subspaces, and a two-state system is defined for the D – A subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between D and A sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of D – A symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the D – A tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.
doi_str_mv 10.1007/s00894-019-3936-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2183649564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179790630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3</originalsourceid><addsrcrecordid>eNp1kc2KFDEUhYMoTjPOA7iRgBs3pflPxZ2MvzDgRtfhdupWW0NV0iYptXfiK_iGPolpenRAcHG5cPLdkwOHkIecPeWM2WeFsd6pjnHXSSdNp-6QDXOq7zQT8i7ZcMNZJ5xiZ-SilGvGGBfaaCHukzPJrHaitxvy42WKKf_6_hNCwH1NmZbDsmDNU6AQhzZ1ulXqGiPOU9zRBZrwjeKMC8ZanlOge6ifvsKBLmnAmU7xC5Y67aBOKdI00n1OFad4PAk1N61miGXE_IDcG2EueHGzz8nH168-XL7trt6_eXf54qoLUqjaBaGBWTVsDdduqxBBaIXGDRyMUuhMHxQfQQ4DWgMSxn4EvR2tlgNY2wd5Tp6cfFuSz2sL55epBJxniJjW4gXvpVFOG9XQx_-g12nNsaVrlHXWMSNZo_iJCjmVknH0-zwtkA-eM3_syJ868q0jf-zIH50f3Tiv2wWHvxd_GmmAOAGlPcUd5tuv_-_6G_-ooIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179790630</pqid></control><display><type>article</type><title>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</title><source>Springer Link</source><creator>de Andrade, P. C. P. ; Guerra, J. C. O.</creator><creatorcontrib>de Andrade, P. C. P. ; Guerra, J. C. O.</creatorcontrib><description>In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor ( D – A ) and protein bridge subspaces, and a two-state system is defined for the D – A subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between D and A sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of D – A symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the D – A tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-019-3936-4</identifier><identifier>PMID: 30759287</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Coupling ; Electron transfer ; Electron tunneling ; Mathematical analysis ; Matrix methods ; Molecular Medicine ; Original Paper ; Proteins ; Subspaces ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2019-03, Vol.25 (3), p.64-9, Article 64</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30759287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Andrade, P. C. P.</creatorcontrib><creatorcontrib>Guerra, J. C. O.</creatorcontrib><title>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor ( D – A ) and protein bridge subspaces, and a two-state system is defined for the D – A subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between D and A sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of D – A symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the D – A tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Coupling</subject><subject>Electron transfer</subject><subject>Electron tunneling</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Proteins</subject><subject>Subspaces</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc2KFDEUhYMoTjPOA7iRgBs3pflPxZ2MvzDgRtfhdupWW0NV0iYptXfiK_iGPolpenRAcHG5cPLdkwOHkIecPeWM2WeFsd6pjnHXSSdNp-6QDXOq7zQT8i7ZcMNZJ5xiZ-SilGvGGBfaaCHukzPJrHaitxvy42WKKf_6_hNCwH1NmZbDsmDNU6AQhzZ1ulXqGiPOU9zRBZrwjeKMC8ZanlOge6ifvsKBLmnAmU7xC5Y67aBOKdI00n1OFad4PAk1N61miGXE_IDcG2EueHGzz8nH168-XL7trt6_eXf54qoLUqjaBaGBWTVsDdduqxBBaIXGDRyMUuhMHxQfQQ4DWgMSxn4EvR2tlgNY2wd5Tp6cfFuSz2sL55epBJxniJjW4gXvpVFOG9XQx_-g12nNsaVrlHXWMSNZo_iJCjmVknH0-zwtkA-eM3_syJ868q0jf-zIH50f3Tiv2wWHvxd_GmmAOAGlPcUd5tuv_-_6G_-ooIg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>de Andrade, P. C. P.</creator><creator>Guerra, J. C. O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190301</creationdate><title>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</title><author>de Andrade, P. C. P. ; Guerra, J. C. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Coupling</topic><topic>Electron transfer</topic><topic>Electron tunneling</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Proteins</topic><topic>Subspaces</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Andrade, P. C. P.</creatorcontrib><creatorcontrib>Guerra, J. C. O.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Andrade, P. C. P.</au><au>Guerra, J. C. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>25</volume><issue>3</issue><spage>64</spage><epage>9</epage><pages>64-9</pages><artnum>64</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor ( D – A ) and protein bridge subspaces, and a two-state system is defined for the D – A subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between D and A sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of D – A symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the D – A tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30759287</pmid><doi>10.1007/s00894-019-3936-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2019-03, Vol.25 (3), p.64-9, Article 64
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2183649564
source Springer Link
subjects Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Coupling
Electron transfer
Electron tunneling
Mathematical analysis
Matrix methods
Molecular Medicine
Original Paper
Proteins
Subspaces
Theoretical and Computational Chemistry
title Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Donor%E2%80%93acceptor%20symmetric%20and%20antisymmetric%20tunneling%20matrix%20elements:%20a%20pathway%20model%20investigation%20of%20protein%20electron%20transfer&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=de%20Andrade,%20P.%20C.%20P.&rft.date=2019-03-01&rft.volume=25&rft.issue=3&rft.spage=64&rft.epage=9&rft.pages=64-9&rft.artnum=64&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-019-3936-4&rft_dat=%3Cproquest_cross%3E2179790630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179790630&rft_id=info:pmid/30759287&rfr_iscdi=true