Loading…
Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer
In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor ( D – A ) and protein bridge subspaces, and a two-state system is defined for the D – A subspace. Löwdin partitioning is used to perform the two-state reductions necessary to comput...
Saved in:
Published in: | Journal of molecular modeling 2019-03, Vol.25 (3), p.64-9, Article 64 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3 |
container_end_page | 9 |
container_issue | 3 |
container_start_page | 64 |
container_title | Journal of molecular modeling |
container_volume | 25 |
creator | de Andrade, P. C. P. Guerra, J. C. O. |
description | In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor (
D
–
A
) and protein bridge subspaces, and a two-state system is defined for the
D
–
A
subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between
D
and
A
sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of
D
–
A
symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the
D
–
A
tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways. |
doi_str_mv | 10.1007/s00894-019-3936-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2183649564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179790630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3</originalsourceid><addsrcrecordid>eNp1kc2KFDEUhYMoTjPOA7iRgBs3pflPxZ2MvzDgRtfhdupWW0NV0iYptXfiK_iGPolpenRAcHG5cPLdkwOHkIecPeWM2WeFsd6pjnHXSSdNp-6QDXOq7zQT8i7ZcMNZJ5xiZ-SilGvGGBfaaCHukzPJrHaitxvy42WKKf_6_hNCwH1NmZbDsmDNU6AQhzZ1ulXqGiPOU9zRBZrwjeKMC8ZanlOge6ifvsKBLmnAmU7xC5Y67aBOKdI00n1OFad4PAk1N61miGXE_IDcG2EueHGzz8nH168-XL7trt6_eXf54qoLUqjaBaGBWTVsDdduqxBBaIXGDRyMUuhMHxQfQQ4DWgMSxn4EvR2tlgNY2wd5Tp6cfFuSz2sL55epBJxniJjW4gXvpVFOG9XQx_-g12nNsaVrlHXWMSNZo_iJCjmVknH0-zwtkA-eM3_syJ868q0jf-zIH50f3Tiv2wWHvxd_GmmAOAGlPcUd5tuv_-_6G_-ooIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179790630</pqid></control><display><type>article</type><title>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</title><source>Springer Link</source><creator>de Andrade, P. C. P. ; Guerra, J. C. O.</creator><creatorcontrib>de Andrade, P. C. P. ; Guerra, J. C. O.</creatorcontrib><description>In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor (
D
–
A
) and protein bridge subspaces, and a two-state system is defined for the
D
–
A
subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between
D
and
A
sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of
D
–
A
symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the
D
–
A
tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-019-3936-4</identifier><identifier>PMID: 30759287</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Coupling ; Electron transfer ; Electron tunneling ; Mathematical analysis ; Matrix methods ; Molecular Medicine ; Original Paper ; Proteins ; Subspaces ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2019-03, Vol.25 (3), p.64-9, Article 64</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30759287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Andrade, P. C. P.</creatorcontrib><creatorcontrib>Guerra, J. C. O.</creatorcontrib><title>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor (
D
–
A
) and protein bridge subspaces, and a two-state system is defined for the
D
–
A
subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between
D
and
A
sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of
D
–
A
symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the
D
–
A
tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Coupling</subject><subject>Electron transfer</subject><subject>Electron tunneling</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Proteins</subject><subject>Subspaces</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc2KFDEUhYMoTjPOA7iRgBs3pflPxZ2MvzDgRtfhdupWW0NV0iYptXfiK_iGPolpenRAcHG5cPLdkwOHkIecPeWM2WeFsd6pjnHXSSdNp-6QDXOq7zQT8i7ZcMNZJ5xiZ-SilGvGGBfaaCHukzPJrHaitxvy42WKKf_6_hNCwH1NmZbDsmDNU6AQhzZ1ulXqGiPOU9zRBZrwjeKMC8ZanlOge6ifvsKBLmnAmU7xC5Y67aBOKdI00n1OFad4PAk1N61miGXE_IDcG2EueHGzz8nH168-XL7trt6_eXf54qoLUqjaBaGBWTVsDdduqxBBaIXGDRyMUuhMHxQfQQ4DWgMSxn4EvR2tlgNY2wd5Tp6cfFuSz2sL55epBJxniJjW4gXvpVFOG9XQx_-g12nNsaVrlHXWMSNZo_iJCjmVknH0-zwtkA-eM3_syJ868q0jf-zIH50f3Tiv2wWHvxd_GmmAOAGlPcUd5tuv_-_6G_-ooIg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>de Andrade, P. C. P.</creator><creator>Guerra, J. C. O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190301</creationdate><title>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</title><author>de Andrade, P. C. P. ; Guerra, J. C. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Coupling</topic><topic>Electron transfer</topic><topic>Electron tunneling</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Proteins</topic><topic>Subspaces</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Andrade, P. C. P.</creatorcontrib><creatorcontrib>Guerra, J. C. O.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Andrade, P. C. P.</au><au>Guerra, J. C. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>25</volume><issue>3</issue><spage>64</spage><epage>9</epage><pages>64-9</pages><artnum>64</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor (
D
–
A
) and protein bridge subspaces, and a two-state system is defined for the
D
–
A
subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between
D
and
A
sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of
D
–
A
symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the
D
–
A
tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30759287</pmid><doi>10.1007/s00894-019-3936-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2019-03, Vol.25 (3), p.64-9, Article 64 |
issn | 1610-2940 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2183649564 |
source | Springer Link |
subjects | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Coupling Electron transfer Electron tunneling Mathematical analysis Matrix methods Molecular Medicine Original Paper Proteins Subspaces Theoretical and Computational Chemistry |
title | Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Donor%E2%80%93acceptor%20symmetric%20and%20antisymmetric%20tunneling%20matrix%20elements:%20a%20pathway%20model%20investigation%20of%20protein%20electron%20transfer&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=de%20Andrade,%20P.%20C.%20P.&rft.date=2019-03-01&rft.volume=25&rft.issue=3&rft.spage=64&rft.epage=9&rft.pages=64-9&rft.artnum=64&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-019-3936-4&rft_dat=%3Cproquest_cross%3E2179790630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-c25a074db6159b4eea254e69d1a644e968c41fa3dde76a3af8fa5bf753da778c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179790630&rft_id=info:pmid/30759287&rfr_iscdi=true |