Loading…

Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers

In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilit...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019-02, Vol.21 (8), p.4452-4460
Main Authors: Afzal, Mohammad Atif Faiz, Hachmann, Johannes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093
cites cdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093
container_end_page 4460
container_issue 8
container_start_page 4452
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Afzal, Mohammad Atif Faiz
Hachmann, Johannes
description In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.
doi_str_mv 10.1039/c8cp05492d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2184136796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184136796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</originalsourceid><addsrcrecordid>eNpdkU9L7TAQxYMo6lM3fgAJuJEHVydN2iRLvT7_gKALXZc0nXqjvU1NWvEKfveX61UXrmYYfnOYM4eQfQbHDLg-scr2kAud1Wtkm4mCTzQosf7Ty2KL_InxCQBYzvgm2eIguZBSbpOPM-zsbG7Cs-se6fnFPTV9H7yxM4y08YEOM6TWtHZszeB8R31De9-a4N5N5Vo3LKjr-nFYwQGbYOzgXjFNa3yjfcDa2eViTBPqw6PpnF0qLOYY4i7ZaEwbce-r7pCHi3_306vJze3l9fT0ZmI5y4dJBQ0TANKqOlNNhqKySqFuAGsual1nEjRmlckLpaU0UhesKHSuWZ4JC6D5Djla6SZrLyPGoZy7aLFtTYd-jGXGlGC8SIsJPfyFPvkxdOm6TyoDyNmS-ruibPAxJttlH1z64qJkUC5DKadqevcZynmCD74kx2qO9Q_6nQL_D-8miDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184200516</pqid></control><display><type>article</type><title>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Afzal, Mohammad Atif Faiz ; Hachmann, Johannes</creator><creatorcontrib>Afzal, Mohammad Atif Faiz ; Hachmann, Johannes</creatorcontrib><description>In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05492d</identifier><identifier>PMID: 30734777</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Computation ; Density functional theory ; Extrapolation ; First principles ; Lorenz equations ; Mathematical models ; Nonlinear analysis ; Organic chemistry ; Polymers ; Refractivity ; Sequences ; Statistical analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (8), p.4452-4460</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</citedby><cites>FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</cites><orcidid>0000-0001-8261-2024 ; 0000-0003-4501-4118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30734777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afzal, Mohammad Atif Faiz</creatorcontrib><creatorcontrib>Hachmann, Johannes</creatorcontrib><title>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.</description><subject>Computation</subject><subject>Density functional theory</subject><subject>Extrapolation</subject><subject>First principles</subject><subject>Lorenz equations</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Organic chemistry</subject><subject>Polymers</subject><subject>Refractivity</subject><subject>Sequences</subject><subject>Statistical analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU9L7TAQxYMo6lM3fgAJuJEHVydN2iRLvT7_gKALXZc0nXqjvU1NWvEKfveX61UXrmYYfnOYM4eQfQbHDLg-scr2kAud1Wtkm4mCTzQosf7Ty2KL_InxCQBYzvgm2eIguZBSbpOPM-zsbG7Cs-se6fnFPTV9H7yxM4y08YEOM6TWtHZszeB8R31De9-a4N5N5Vo3LKjr-nFYwQGbYOzgXjFNa3yjfcDa2eViTBPqw6PpnF0qLOYY4i7ZaEwbce-r7pCHi3_306vJze3l9fT0ZmI5y4dJBQ0TANKqOlNNhqKySqFuAGsual1nEjRmlckLpaU0UhesKHSuWZ4JC6D5Djla6SZrLyPGoZy7aLFtTYd-jGXGlGC8SIsJPfyFPvkxdOm6TyoDyNmS-ruibPAxJttlH1z64qJkUC5DKadqevcZynmCD74kx2qO9Q_6nQL_D-8miDI</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Afzal, Mohammad Atif Faiz</creator><creator>Hachmann, Johannes</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8261-2024</orcidid><orcidid>https://orcid.org/0000-0003-4501-4118</orcidid></search><sort><creationdate>20190220</creationdate><title>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</title><author>Afzal, Mohammad Atif Faiz ; Hachmann, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computation</topic><topic>Density functional theory</topic><topic>Extrapolation</topic><topic>First principles</topic><topic>Lorenz equations</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Organic chemistry</topic><topic>Polymers</topic><topic>Refractivity</topic><topic>Sequences</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afzal, Mohammad Atif Faiz</creatorcontrib><creatorcontrib>Hachmann, Johannes</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afzal, Mohammad Atif Faiz</au><au>Hachmann, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>21</volume><issue>8</issue><spage>4452</spage><epage>4460</epage><pages>4452-4460</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30734777</pmid><doi>10.1039/c8cp05492d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8261-2024</orcidid><orcidid>https://orcid.org/0000-0003-4501-4118</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (8), p.4452-4460
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2184136796
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Computation
Density functional theory
Extrapolation
First principles
Lorenz equations
Mathematical models
Nonlinear analysis
Organic chemistry
Polymers
Refractivity
Sequences
Statistical analysis
title Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20DFT%20approaches%20for%20the%20calculation%20of%20polarizability%20inputs%20for%20refractive%20index%20predictions%20in%20organic%20polymers&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Afzal,%20Mohammad%20Atif%20Faiz&rft.date=2019-02-20&rft.volume=21&rft.issue=8&rft.spage=4452&rft.epage=4460&rft.pages=4452-4460&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05492d&rft_dat=%3Cproquest_cross%3E2184136796%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184200516&rft_id=info:pmid/30734777&rfr_iscdi=true