Loading…
Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers
In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilit...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2019-02, Vol.21 (8), p.4452-4460 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093 |
container_end_page | 4460 |
container_issue | 8 |
container_start_page | 4452 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Afzal, Mohammad Atif Faiz Hachmann, Johannes |
description | In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection. |
doi_str_mv | 10.1039/c8cp05492d |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2184136796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2184136796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</originalsourceid><addsrcrecordid>eNpdkU9L7TAQxYMo6lM3fgAJuJEHVydN2iRLvT7_gKALXZc0nXqjvU1NWvEKfveX61UXrmYYfnOYM4eQfQbHDLg-scr2kAud1Wtkm4mCTzQosf7Ty2KL_InxCQBYzvgm2eIguZBSbpOPM-zsbG7Cs-se6fnFPTV9H7yxM4y08YEOM6TWtHZszeB8R31De9-a4N5N5Vo3LKjr-nFYwQGbYOzgXjFNa3yjfcDa2eViTBPqw6PpnF0qLOYY4i7ZaEwbce-r7pCHi3_306vJze3l9fT0ZmI5y4dJBQ0TANKqOlNNhqKySqFuAGsual1nEjRmlckLpaU0UhesKHSuWZ4JC6D5Djla6SZrLyPGoZy7aLFtTYd-jGXGlGC8SIsJPfyFPvkxdOm6TyoDyNmS-ruibPAxJttlH1z64qJkUC5DKadqevcZynmCD74kx2qO9Q_6nQL_D-8miDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184200516</pqid></control><display><type>article</type><title>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Afzal, Mohammad Atif Faiz ; Hachmann, Johannes</creator><creatorcontrib>Afzal, Mohammad Atif Faiz ; Hachmann, Johannes</creatorcontrib><description>In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05492d</identifier><identifier>PMID: 30734777</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Computation ; Density functional theory ; Extrapolation ; First principles ; Lorenz equations ; Mathematical models ; Nonlinear analysis ; Organic chemistry ; Polymers ; Refractivity ; Sequences ; Statistical analysis</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (8), p.4452-4460</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</citedby><cites>FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</cites><orcidid>0000-0001-8261-2024 ; 0000-0003-4501-4118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30734777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Afzal, Mohammad Atif Faiz</creatorcontrib><creatorcontrib>Hachmann, Johannes</creatorcontrib><title>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.</description><subject>Computation</subject><subject>Density functional theory</subject><subject>Extrapolation</subject><subject>First principles</subject><subject>Lorenz equations</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Organic chemistry</subject><subject>Polymers</subject><subject>Refractivity</subject><subject>Sequences</subject><subject>Statistical analysis</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU9L7TAQxYMo6lM3fgAJuJEHVydN2iRLvT7_gKALXZc0nXqjvU1NWvEKfveX61UXrmYYfnOYM4eQfQbHDLg-scr2kAud1Wtkm4mCTzQosf7Ty2KL_InxCQBYzvgm2eIguZBSbpOPM-zsbG7Cs-se6fnFPTV9H7yxM4y08YEOM6TWtHZszeB8R31De9-a4N5N5Vo3LKjr-nFYwQGbYOzgXjFNa3yjfcDa2eViTBPqw6PpnF0qLOYY4i7ZaEwbce-r7pCHi3_306vJze3l9fT0ZmI5y4dJBQ0TANKqOlNNhqKySqFuAGsual1nEjRmlckLpaU0UhesKHSuWZ4JC6D5Djla6SZrLyPGoZy7aLFtTYd-jGXGlGC8SIsJPfyFPvkxdOm6TyoDyNmS-ruibPAxJttlH1z64qJkUC5DKadqevcZynmCD74kx2qO9Q_6nQL_D-8miDI</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Afzal, Mohammad Atif Faiz</creator><creator>Hachmann, Johannes</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8261-2024</orcidid><orcidid>https://orcid.org/0000-0003-4501-4118</orcidid></search><sort><creationdate>20190220</creationdate><title>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</title><author>Afzal, Mohammad Atif Faiz ; Hachmann, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computation</topic><topic>Density functional theory</topic><topic>Extrapolation</topic><topic>First principles</topic><topic>Lorenz equations</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Organic chemistry</topic><topic>Polymers</topic><topic>Refractivity</topic><topic>Sequences</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afzal, Mohammad Atif Faiz</creatorcontrib><creatorcontrib>Hachmann, Johannes</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afzal, Mohammad Atif Faiz</au><au>Hachmann, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>21</volume><issue>8</issue><spage>4452</spage><epage>4460</epage><pages>4452-4460</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In a previous study, we introduced a new computational protocol to accurately predict the index of refraction (RI) of organic polymers using a combination of first-principles and data modeling. This protocol is based on the Lorentz-Lorenz equation and involves the calculation of static polarizabilities and number densities of oligomer sequences, which are extrapolated to the polymer limit. We chose to compute the polarizabilities within the density functional theory (DFT) framework using the PBE0/def2-TZVP-D3 model chemistry. While this ad hoc choice proved remarkably successful, it is also relatively expensive from a computational perspective. It represents the bottleneck step in the overall RI modeling protocol, thus limiting its utility for virtual high-throughput screening studies, in which efficiency is essential. For polymers that exhibit late-onset extensivity, the employed linear extrapolation scheme can require demanding calculations on long-oligomer sequences, thus becoming another bottleneck. In the work presented here, we benchmark DFT model chemistries to identify approaches that optimize the balance between accuracy and efficiency for this application domain. We compare results for conjugated and non-conjugated polymers, augment our original extrapolation approach with a non-linear option, analyze how the polarizability errors propagate into the RI predictions, and offer guidance for method selection.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30734777</pmid><doi>10.1039/c8cp05492d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8261-2024</orcidid><orcidid>https://orcid.org/0000-0003-4501-4118</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019-02, Vol.21 (8), p.4452-4460 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2184136796 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Computation Density functional theory Extrapolation First principles Lorenz equations Mathematical models Nonlinear analysis Organic chemistry Polymers Refractivity Sequences Statistical analysis |
title | Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20DFT%20approaches%20for%20the%20calculation%20of%20polarizability%20inputs%20for%20refractive%20index%20predictions%20in%20organic%20polymers&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Afzal,%20Mohammad%20Atif%20Faiz&rft.date=2019-02-20&rft.volume=21&rft.issue=8&rft.spage=4452&rft.epage=4460&rft.pages=4452-4460&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05492d&rft_dat=%3Cproquest_cross%3E2184136796%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-b0f14007c8d28f2e4bc88e9f0ed34d9d2709e2ba568977a7961669591524c0093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184200516&rft_id=info:pmid/30734777&rfr_iscdi=true |