Loading…
Thermal-induced slippage of soft solid films
The dynamics of interfacial slippage of entangled polystyrene (PS) films on an adsorbed layer of polydimethylsiloxane on silicon was studied from the surface capillary dynamics of the films. By using PS with different molecular weights, we observed slippage of the films in the viscoelastic liquid an...
Saved in:
Published in: | Physical review. E 2019-01, Vol.99 (1-1), p.010501-010501, Article 010501 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dynamics of interfacial slippage of entangled polystyrene (PS) films on an adsorbed layer of polydimethylsiloxane on silicon was studied from the surface capillary dynamics of the films. By using PS with different molecular weights, we observed slippage of the films in the viscoelastic liquid and rubbery solid state, respectively. Remarkably, all our data can be explained by the linear equation, J=-M∇P and a single friction coefficient, ξ, where J is the unit-width current, M is mobility, and P is Laplace pressure. For viscous films, M is accountable by using conventional formulism. For rubbery films, M takes on different expressions depending on whether the displacements associated with the slip velocity, v_{s}(∼∇P/ξ), dominate or elastic deformations induced by ∇P dominate. For viscoelastic liquid films, M is the sum of the mobility of the films in the viscous and rubbery states. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.99.010501 |