Loading…

Thermal-induced slippage of soft solid films

The dynamics of interfacial slippage of entangled polystyrene (PS) films on an adsorbed layer of polydimethylsiloxane on silicon was studied from the surface capillary dynamics of the films. By using PS with different molecular weights, we observed slippage of the films in the viscoelastic liquid an...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2019-01, Vol.99 (1-1), p.010501-010501, Article 010501
Main Authors: Yu, Xuanji, Chen, Fei, Lam, Chi-Hang, Tsui, Ophelia K C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dynamics of interfacial slippage of entangled polystyrene (PS) films on an adsorbed layer of polydimethylsiloxane on silicon was studied from the surface capillary dynamics of the films. By using PS with different molecular weights, we observed slippage of the films in the viscoelastic liquid and rubbery solid state, respectively. Remarkably, all our data can be explained by the linear equation, J=-M∇P and a single friction coefficient, ξ, where J is the unit-width current, M is mobility, and P is Laplace pressure. For viscous films, M is accountable by using conventional formulism. For rubbery films, M takes on different expressions depending on whether the displacements associated with the slip velocity, v_{s}(∼∇P/ξ), dominate or elastic deformations induced by ∇P dominate. For viscoelastic liquid films, M is the sum of the mobility of the films in the viscous and rubbery states.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.99.010501