Loading…

Nanotechnology in the diagnosis and treatment of lung cancer

Lung cancer is an umbrella term for a subset of heterogeneous diseases that are collectively responsible for the most cancer-related deaths worldwide. Despite the tremendous progress made in understanding lung tumour biology, advances in early diagnosis, multimodal therapy and deciphering molecular...

Full description

Saved in:
Bibliographic Details
Published in:Pharmacology & therapeutics (Oxford) 2019-06, Vol.198, p.189-205
Main Authors: Cryer, Alexander M., Thorley, Andrew J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lung cancer is an umbrella term for a subset of heterogeneous diseases that are collectively responsible for the most cancer-related deaths worldwide. Despite the tremendous progress made in understanding lung tumour biology, advances in early diagnosis, multimodal therapy and deciphering molecular mechanisms of drug resistance, overall curative outcomes remain low, especially in metastatic disease. Nanotechnology, in particular nanoparticles (NPs), continue to progressively impact the way by which tumours are diagnosed and treated. The unique physicochemical properties of materials at the nanoscale grant access to a diverse molecular toolkit that can be manipulated for use in respiratory oncology. This realisation has resulted in several clinically approved NP formulations and many more in clinical trials. However, NPs are not a panacea and have yet to be utilised to maximal effect in lung cancer, and medicine in a wider context. This review serves to: describe the complexity of lung cancer, the current diagnostic and therapeutic environment, and highlight the recent advancements of nanotechnology based approaches in diagnosis and treatment of respiratory malignancies. Finally, a brief outlook on the future directions of nanomedicine is provided; presently the full potential of the field is yet to be realised. By gleaning lessons and integrating advancements from neighbouring disciplines, nanomedicine can be elevated to a position where the current barriers that stymie full clinical impact are lifted.
ISSN:0163-7258
1879-016X
DOI:10.1016/j.pharmthera.2019.02.010