Loading…
Advances in exosomes technology
Exosomes, also called extracellular vesicles (EVs), are membranous structures measuring between 40 and 100 nm. Exosomes, secreted by various cells of the human body into body fluids, contain protein, mRNA, miRNA, and signaling molecules. Physiologically, exosomes assist in the intercellular transpor...
Saved in:
Published in: | Clinica chimica acta 2019-06, Vol.493, p.14-19 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exosomes, also called extracellular vesicles (EVs), are membranous structures measuring between 40 and 100 nm. Exosomes, secreted by various cells of the human body into body fluids, contain protein, mRNA, miRNA, and signaling molecules. Physiologically, exosomes assist in the intercellular transport of protein and RNA. Immunologically, exosomes exhibit antigen-presenting capability. In recent studies, exosomes were found to be associated with the pathophysiology of cardiovascular, renal, neurological, and ocular diseases. In addition, exosomes may play a major role in cancer metastasis. Due to the extremely small size and scarcity of exosomes in living samples, many early studies utilized sucrose density gradient ultracentrifugation for exosome collection. However, sucrose density gradient ultracentrifugation is rather time consuming and requires large biological sample quantities. Newer exosome studies combined immunoaffinity and microfluidic system approaches for more efficient exosome collection. Our review summarizes existing methods for EV isolation and notes their advantages and disadvantages. These promising approaches are all characterized by isolation efficiency, and savings in cost, labor, and time. Optimization of current methods is a necessary step toward clinically-relevant diagnostic product production, but the fact that EVs are already widely used in disease diagnosis and treatment encourages continued efforts.
•More and more advances in exosomes technology made isolation of exosome from different samples less cumbersome•In this article, the comparisons between their advantages and disadvantages of different isolation methods are summarized•More promising exosomes-based diagnostic and therapeutic applications would be expected in the near future |
---|---|
ISSN: | 0009-8981 1873-3492 |
DOI: | 10.1016/j.cca.2019.02.021 |