Loading…
Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix
Stable oil nanocapsules based on acetylated Sterculia striata polysaccharide (ASSP) were produced without the use of a surfactant, and derivatives of ASSP with four different degrees of substitution (DS) were synthesised. The data revealed that only derivatives with high DS were able to produce nano...
Saved in:
Published in: | International journal of biological macromolecules 2019-06, Vol.130, p.655-663 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stable oil nanocapsules based on acetylated Sterculia striata polysaccharide (ASSP) were produced without the use of a surfactant, and derivatives of ASSP with four different degrees of substitution (DS) were synthesised. The data revealed that only derivatives with high DS were able to produce nanocapsules (NC), which exhibited monomodal size distribution profiles with a Z-average particle size, ζ-potential, and polydispersity index (PDI) that were dependent on ASSP DS and concentration. Nanocapsules were loaded with amphotericin B (AMB) with encapsulation efficiencies (EE%) that were dependent on drug and ASSP concentrations and DS. A maximum EE% value of 99.2% was achieved, and the loaded AMB was found to be in a monomeric form, even with a concentration one hundredfold higher than that usually observed for commercial AMB aqueous solutions. Loaded nanocapsules show an in vitro controlled release of AMB. As the monomeric AMB state decreased drug toxicity, ASSP nanocapsules loaded with AMB (NC1.68) have potential for use as a drug delivery system. AMB loaded NC 1.68 keeps its activity against 5 strains of Candida albicans tested.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2019.02.076 |