Loading…
Model‐based optimization of antibody galactosylation in CHO cell culture
Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect c...
Saved in:
Published in: | Biotechnology and bioengineering 2019-07, Vol.116 (7), p.1612-1626 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763 |
---|---|
cites | cdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763 |
container_end_page | 1626 |
container_issue | 7 |
container_start_page | 1612 |
container_title | Biotechnology and bioengineering |
container_volume | 116 |
creator | Kotidis, Pavlos Jedrzejewski, Philip Sou, Si Nga Sellick, Christopher Polizzi, Karen del Val, Ioscani Jimenez Kontoravdi, Cleo |
description | Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses.
Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. |
doi_str_mv | 10.1002/bit.26960 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186143689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186143689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EoqUw8AIoEgsMac924jgjVECLQF3KbNmOg1ylcYkToTDxCDwjT0JKCgMS093pPv13-hA6xTDGAGSibD0mLGWwh4YY0iQEksI-GgIAC2mckgE68n7VjQln7BANKHAgJI2H6P7RZab4fP9Q0psscJvaru2brK0rA5cHsqytclkbPMtC6tr5tuh3tgyms0WgTVEEuinqpjLH6CCXhTcnuzpCT7c3y-ksfFjczadXD6GOSAxhDjLhkmCaKoax4owmECVY5oCNiZihXZvgWKuIA2ZaU5Nrw-IoSrjKacLoCF30uZvKvTTG12Jt_fYRWRrXeEEwZziijKcdev4HXbmmKrvvBCGUbu_GuKMue0pXzvvK5GJT2bWsWoFBbAWLTrD4FtyxZ7vERq1N9kv-GO2ASQ-82sK0_yeJ6_myj_wC8tOD9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233047151</pqid></control><display><type>article</type><title>Model‐based optimization of antibody galactosylation in CHO cell culture</title><source>Wiley</source><creator>Kotidis, Pavlos ; Jedrzejewski, Philip ; Sou, Si Nga ; Sellick, Christopher ; Polizzi, Karen ; del Val, Ioscani Jimenez ; Kontoravdi, Cleo</creator><creatorcontrib>Kotidis, Pavlos ; Jedrzejewski, Philip ; Sou, Si Nga ; Sellick, Christopher ; Polizzi, Karen ; del Val, Ioscani Jimenez ; Kontoravdi, Cleo</creatorcontrib><description>Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses.
Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26960</identifier><identifier>PMID: 30802295</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Antibodies ; antibody glycosylation ; Cell culture ; Cell density ; Chinese hamster ovary (CHO) cells ; Design ; Design optimization ; Feeding ; Galactose ; galactosylation ; Glycan ; Glycosylation ; mathematical modeling ; Metabolism ; nucleotide sugars ; process optimization ; Product safety ; Productivity ; Uridine</subject><ispartof>Biotechnology and bioengineering, 2019-07, Vol.116 (7), p.1612-1626</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</citedby><cites>FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</cites><orcidid>0000-0001-5435-2667 ; 0000-0003-0213-4830 ; 0000-0001-9289-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30802295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotidis, Pavlos</creatorcontrib><creatorcontrib>Jedrzejewski, Philip</creatorcontrib><creatorcontrib>Sou, Si Nga</creatorcontrib><creatorcontrib>Sellick, Christopher</creatorcontrib><creatorcontrib>Polizzi, Karen</creatorcontrib><creatorcontrib>del Val, Ioscani Jimenez</creatorcontrib><creatorcontrib>Kontoravdi, Cleo</creatorcontrib><title>Model‐based optimization of antibody galactosylation in CHO cell culture</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses.
Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity.</description><subject>Antibodies</subject><subject>antibody glycosylation</subject><subject>Cell culture</subject><subject>Cell density</subject><subject>Chinese hamster ovary (CHO) cells</subject><subject>Design</subject><subject>Design optimization</subject><subject>Feeding</subject><subject>Galactose</subject><subject>galactosylation</subject><subject>Glycan</subject><subject>Glycosylation</subject><subject>mathematical modeling</subject><subject>Metabolism</subject><subject>nucleotide sugars</subject><subject>process optimization</subject><subject>Product safety</subject><subject>Productivity</subject><subject>Uridine</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EoqUw8AIoEgsMac924jgjVECLQF3KbNmOg1ylcYkToTDxCDwjT0JKCgMS093pPv13-hA6xTDGAGSibD0mLGWwh4YY0iQEksI-GgIAC2mckgE68n7VjQln7BANKHAgJI2H6P7RZab4fP9Q0psscJvaru2brK0rA5cHsqytclkbPMtC6tr5tuh3tgyms0WgTVEEuinqpjLH6CCXhTcnuzpCT7c3y-ksfFjczadXD6GOSAxhDjLhkmCaKoax4owmECVY5oCNiZihXZvgWKuIA2ZaU5Nrw-IoSrjKacLoCF30uZvKvTTG12Jt_fYRWRrXeEEwZziijKcdev4HXbmmKrvvBCGUbu_GuKMue0pXzvvK5GJT2bWsWoFBbAWLTrD4FtyxZ7vERq1N9kv-GO2ASQ-82sK0_yeJ6_myj_wC8tOD9g</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Kotidis, Pavlos</creator><creator>Jedrzejewski, Philip</creator><creator>Sou, Si Nga</creator><creator>Sellick, Christopher</creator><creator>Polizzi, Karen</creator><creator>del Val, Ioscani Jimenez</creator><creator>Kontoravdi, Cleo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5435-2667</orcidid><orcidid>https://orcid.org/0000-0003-0213-4830</orcidid><orcidid>https://orcid.org/0000-0001-9289-0191</orcidid></search><sort><creationdate>201907</creationdate><title>Model‐based optimization of antibody galactosylation in CHO cell culture</title><author>Kotidis, Pavlos ; Jedrzejewski, Philip ; Sou, Si Nga ; Sellick, Christopher ; Polizzi, Karen ; del Val, Ioscani Jimenez ; Kontoravdi, Cleo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibodies</topic><topic>antibody glycosylation</topic><topic>Cell culture</topic><topic>Cell density</topic><topic>Chinese hamster ovary (CHO) cells</topic><topic>Design</topic><topic>Design optimization</topic><topic>Feeding</topic><topic>Galactose</topic><topic>galactosylation</topic><topic>Glycan</topic><topic>Glycosylation</topic><topic>mathematical modeling</topic><topic>Metabolism</topic><topic>nucleotide sugars</topic><topic>process optimization</topic><topic>Product safety</topic><topic>Productivity</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotidis, Pavlos</creatorcontrib><creatorcontrib>Jedrzejewski, Philip</creatorcontrib><creatorcontrib>Sou, Si Nga</creatorcontrib><creatorcontrib>Sellick, Christopher</creatorcontrib><creatorcontrib>Polizzi, Karen</creatorcontrib><creatorcontrib>del Val, Ioscani Jimenez</creatorcontrib><creatorcontrib>Kontoravdi, Cleo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotidis, Pavlos</au><au>Jedrzejewski, Philip</au><au>Sou, Si Nga</au><au>Sellick, Christopher</au><au>Polizzi, Karen</au><au>del Val, Ioscani Jimenez</au><au>Kontoravdi, Cleo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model‐based optimization of antibody galactosylation in CHO cell culture</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2019-07</date><risdate>2019</risdate><volume>116</volume><issue>7</issue><spage>1612</spage><epage>1626</epage><pages>1612-1626</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses.
Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30802295</pmid><doi>10.1002/bit.26960</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5435-2667</orcidid><orcidid>https://orcid.org/0000-0003-0213-4830</orcidid><orcidid>https://orcid.org/0000-0001-9289-0191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2019-07, Vol.116 (7), p.1612-1626 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2186143689 |
source | Wiley |
subjects | Antibodies antibody glycosylation Cell culture Cell density Chinese hamster ovary (CHO) cells Design Design optimization Feeding Galactose galactosylation Glycan Glycosylation mathematical modeling Metabolism nucleotide sugars process optimization Product safety Productivity Uridine |
title | Model‐based optimization of antibody galactosylation in CHO cell culture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%E2%80%90based%20optimization%20of%20antibody%20galactosylation%20in%20CHO%20cell%20culture&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Kotidis,%20Pavlos&rft.date=2019-07&rft.volume=116&rft.issue=7&rft.spage=1612&rft.epage=1626&rft.pages=1612-1626&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26960&rft_dat=%3Cproquest_cross%3E2186143689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233047151&rft_id=info:pmid/30802295&rfr_iscdi=true |