Loading…

Model‐based optimization of antibody galactosylation in CHO cell culture

Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect c...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2019-07, Vol.116 (7), p.1612-1626
Main Authors: Kotidis, Pavlos, Jedrzejewski, Philip, Sou, Si Nga, Sellick, Christopher, Polizzi, Karen, del Val, Ioscani Jimenez, Kontoravdi, Cleo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763
cites cdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763
container_end_page 1626
container_issue 7
container_start_page 1612
container_title Biotechnology and bioengineering
container_volume 116
creator Kotidis, Pavlos
Jedrzejewski, Philip
Sou, Si Nga
Sellick, Christopher
Polizzi, Karen
del Val, Ioscani Jimenez
Kontoravdi, Cleo
description Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses. Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity.
doi_str_mv 10.1002/bit.26960
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2186143689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186143689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EoqUw8AIoEgsMac924jgjVECLQF3KbNmOg1ylcYkToTDxCDwjT0JKCgMS093pPv13-hA6xTDGAGSibD0mLGWwh4YY0iQEksI-GgIAC2mckgE68n7VjQln7BANKHAgJI2H6P7RZab4fP9Q0psscJvaru2brK0rA5cHsqytclkbPMtC6tr5tuh3tgyms0WgTVEEuinqpjLH6CCXhTcnuzpCT7c3y-ksfFjczadXD6GOSAxhDjLhkmCaKoax4owmECVY5oCNiZihXZvgWKuIA2ZaU5Nrw-IoSrjKacLoCF30uZvKvTTG12Jt_fYRWRrXeEEwZziijKcdev4HXbmmKrvvBCGUbu_GuKMue0pXzvvK5GJT2bWsWoFBbAWLTrD4FtyxZ7vERq1N9kv-GO2ASQ-82sK0_yeJ6_myj_wC8tOD9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233047151</pqid></control><display><type>article</type><title>Model‐based optimization of antibody galactosylation in CHO cell culture</title><source>Wiley</source><creator>Kotidis, Pavlos ; Jedrzejewski, Philip ; Sou, Si Nga ; Sellick, Christopher ; Polizzi, Karen ; del Val, Ioscani Jimenez ; Kontoravdi, Cleo</creator><creatorcontrib>Kotidis, Pavlos ; Jedrzejewski, Philip ; Sou, Si Nga ; Sellick, Christopher ; Polizzi, Karen ; del Val, Ioscani Jimenez ; Kontoravdi, Cleo</creatorcontrib><description>Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses. Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26960</identifier><identifier>PMID: 30802295</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Antibodies ; antibody glycosylation ; Cell culture ; Cell density ; Chinese hamster ovary (CHO) cells ; Design ; Design optimization ; Feeding ; Galactose ; galactosylation ; Glycan ; Glycosylation ; mathematical modeling ; Metabolism ; nucleotide sugars ; process optimization ; Product safety ; Productivity ; Uridine</subject><ispartof>Biotechnology and bioengineering, 2019-07, Vol.116 (7), p.1612-1626</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</citedby><cites>FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</cites><orcidid>0000-0001-5435-2667 ; 0000-0003-0213-4830 ; 0000-0001-9289-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30802295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotidis, Pavlos</creatorcontrib><creatorcontrib>Jedrzejewski, Philip</creatorcontrib><creatorcontrib>Sou, Si Nga</creatorcontrib><creatorcontrib>Sellick, Christopher</creatorcontrib><creatorcontrib>Polizzi, Karen</creatorcontrib><creatorcontrib>del Val, Ioscani Jimenez</creatorcontrib><creatorcontrib>Kontoravdi, Cleo</creatorcontrib><title>Model‐based optimization of antibody galactosylation in CHO cell culture</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses. Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity.</description><subject>Antibodies</subject><subject>antibody glycosylation</subject><subject>Cell culture</subject><subject>Cell density</subject><subject>Chinese hamster ovary (CHO) cells</subject><subject>Design</subject><subject>Design optimization</subject><subject>Feeding</subject><subject>Galactose</subject><subject>galactosylation</subject><subject>Glycan</subject><subject>Glycosylation</subject><subject>mathematical modeling</subject><subject>Metabolism</subject><subject>nucleotide sugars</subject><subject>process optimization</subject><subject>Product safety</subject><subject>Productivity</subject><subject>Uridine</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EoqUw8AIoEgsMac924jgjVECLQF3KbNmOg1ylcYkToTDxCDwjT0JKCgMS093pPv13-hA6xTDGAGSibD0mLGWwh4YY0iQEksI-GgIAC2mckgE68n7VjQln7BANKHAgJI2H6P7RZab4fP9Q0psscJvaru2brK0rA5cHsqytclkbPMtC6tr5tuh3tgyms0WgTVEEuinqpjLH6CCXhTcnuzpCT7c3y-ksfFjczadXD6GOSAxhDjLhkmCaKoax4owmECVY5oCNiZihXZvgWKuIA2ZaU5Nrw-IoSrjKacLoCF30uZvKvTTG12Jt_fYRWRrXeEEwZziijKcdev4HXbmmKrvvBCGUbu_GuKMue0pXzvvK5GJT2bWsWoFBbAWLTrD4FtyxZ7vERq1N9kv-GO2ASQ-82sK0_yeJ6_myj_wC8tOD9g</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Kotidis, Pavlos</creator><creator>Jedrzejewski, Philip</creator><creator>Sou, Si Nga</creator><creator>Sellick, Christopher</creator><creator>Polizzi, Karen</creator><creator>del Val, Ioscani Jimenez</creator><creator>Kontoravdi, Cleo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5435-2667</orcidid><orcidid>https://orcid.org/0000-0003-0213-4830</orcidid><orcidid>https://orcid.org/0000-0001-9289-0191</orcidid></search><sort><creationdate>201907</creationdate><title>Model‐based optimization of antibody galactosylation in CHO cell culture</title><author>Kotidis, Pavlos ; Jedrzejewski, Philip ; Sou, Si Nga ; Sellick, Christopher ; Polizzi, Karen ; del Val, Ioscani Jimenez ; Kontoravdi, Cleo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antibodies</topic><topic>antibody glycosylation</topic><topic>Cell culture</topic><topic>Cell density</topic><topic>Chinese hamster ovary (CHO) cells</topic><topic>Design</topic><topic>Design optimization</topic><topic>Feeding</topic><topic>Galactose</topic><topic>galactosylation</topic><topic>Glycan</topic><topic>Glycosylation</topic><topic>mathematical modeling</topic><topic>Metabolism</topic><topic>nucleotide sugars</topic><topic>process optimization</topic><topic>Product safety</topic><topic>Productivity</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotidis, Pavlos</creatorcontrib><creatorcontrib>Jedrzejewski, Philip</creatorcontrib><creatorcontrib>Sou, Si Nga</creatorcontrib><creatorcontrib>Sellick, Christopher</creatorcontrib><creatorcontrib>Polizzi, Karen</creatorcontrib><creatorcontrib>del Val, Ioscani Jimenez</creatorcontrib><creatorcontrib>Kontoravdi, Cleo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotidis, Pavlos</au><au>Jedrzejewski, Philip</au><au>Sou, Si Nga</au><au>Sellick, Christopher</au><au>Polizzi, Karen</au><au>del Val, Ioscani Jimenez</au><au>Kontoravdi, Cleo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model‐based optimization of antibody galactosylation in CHO cell culture</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2019-07</date><risdate>2019</risdate><volume>116</volume><issue>7</issue><spage>1612</spage><epage>1626</epage><pages>1612-1626</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade‐off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding – specifically that of galactose and uridine – on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher‐performing bioprocesses. Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch‐to‐batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30802295</pmid><doi>10.1002/bit.26960</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5435-2667</orcidid><orcidid>https://orcid.org/0000-0003-0213-4830</orcidid><orcidid>https://orcid.org/0000-0001-9289-0191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2019-07, Vol.116 (7), p.1612-1626
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2186143689
source Wiley
subjects Antibodies
antibody glycosylation
Cell culture
Cell density
Chinese hamster ovary (CHO) cells
Design
Design optimization
Feeding
Galactose
galactosylation
Glycan
Glycosylation
mathematical modeling
Metabolism
nucleotide sugars
process optimization
Product safety
Productivity
Uridine
title Model‐based optimization of antibody galactosylation in CHO cell culture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%E2%80%90based%20optimization%20of%20antibody%20galactosylation%20in%20CHO%20cell%20culture&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Kotidis,%20Pavlos&rft.date=2019-07&rft.volume=116&rft.issue=7&rft.spage=1612&rft.epage=1626&rft.pages=1612-1626&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.26960&rft_dat=%3Cproquest_cross%3E2186143689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4250-f0a78a2139b611b86370471af01ee46e31af715cb48016cc3efce654478bf3763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2233047151&rft_id=info:pmid/30802295&rfr_iscdi=true