Loading…
Towards osteogenic and bactericidal nanopatterns?
Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for osteogenic and bacte...
Saved in:
Published in: | Nanotechnology 2019-05, Vol.30 (20), p.20LT01-20LT01 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for osteogenic and bactericidal nanopatterns is ongoing but no controlled nanopatterns with dual osteogenic and bactericidal functionalities have been found yet. In this study, electron beam induced deposition (EBID) was used for accurate and reproducible decoration of silicon surfaces with four different types of nanopatterns. The features used in the first two nanopatterns (OST1 and OST2) were derived from osteogenic nanopatterns known to induce osteogenic differentiation of stem cells in the absence of osteogenic supplements. Two modifications of these nanopatterns were also included (OST2-SQ, OST2-H90) to study the effects of controlled disorder and lower nanopillar heights. An E. coli K-12 strain was used for probing the response of bacteria to the nanopatterns. Three nanopatterns (OST2, OST2-SQ, and OST2-H90) exhibited clear bactericidal behavior as evidenced by severely damaged cells and disrupted formation of extracellular polymeric substance. These findings indicate that controlled nanopatterns with features derived from osteogenic ones can have bactericidal activity and that EBID represents an enabling nanotechnology to achieve (multi)functional nanopatterns for bone implants. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab0a3a |