Loading…

Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal–Aspergillus niger Bioleaching Strategy

The fabrication and design of electrodes that transfer more energy at high rates is very crucial for battery technology because of the increasing need for electrical energy storage. Usually, reducing a material’s volume expansion and improving its electrical conductivity can promote electron and Li+...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-02, Vol.11 (8), p.8072-8080
Main Authors: Li, Junzhi, Wang, Lili, Li, La, Lv, Chunxiao, Zatovsky, Igor V, Han, Wei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-50f6aee8152461c64f91343ab9806b0b4d9d6d2c147d1d3276a62d5c7d63599c3
cites cdi_FETCH-LOGICAL-a330t-50f6aee8152461c64f91343ab9806b0b4d9d6d2c147d1d3276a62d5c7d63599c3
container_end_page 8080
container_issue 8
container_start_page 8072
container_title ACS applied materials & interfaces
container_volume 11
creator Li, Junzhi
Wang, Lili
Li, La
Lv, Chunxiao
Zatovsky, Igor V
Han, Wei
description The fabrication and design of electrodes that transfer more energy at high rates is very crucial for battery technology because of the increasing need for electrical energy storage. Usually, reducing a material’s volume expansion and improving its electrical conductivity can promote electron and Li+/Na+ ion transfer in nanostructured electrodes and improve rate capability and stability. Here, we demonstrate a general metal–Aspergillus niger bioleaching approach for preparing novel fungus-inspired electrode materials that may enable high-performance lithium ion/sodium ion batteries with one-dimensional architectures. The fungus functions as a natural template to provide large amounts of nitrogen/carbon sources, which are functionalized with metal sulfide nanoparticles, yielding various metal sulfide nanoparticles/nitrogen-doped carbonaceous fibers (MS/NCF (MS = ZnS, Co9S8, FeS, Cu1.81S)) with high conductivity. In addition, the as-obtained MS/NCF has a uniform fiber architecture and abundant porous structure, which can also enhance the storage ability for LIBs and SIBs. Taking ZnS/NCF as an example, the material exhibits a high specific capacity of up to 715.5 mAh g–1 (100 cycles) and 455 mAh g–1 (50 cycles) at 0.1 A g–1 for LIBs and SIBs, respectively. This versatile approach for employing a fungus as a sustainable template to form high-performance electrodes may provide a systematic platform for implementing advanced battery designs.
doi_str_mv 10.1021/acsami.8b21976
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187025180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187025180</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-50f6aee8152461c64f91343ab9806b0b4d9d6d2c147d1d3276a62d5c7d63599c3</originalsourceid><addsrcrecordid>eNp1kT1PwzAQhi0E4ntlRB4RUlt_xUk2aMVHpQJDYY6c-BIMSVxsB8TGb4B_yC8h0MLGdDc895zuXoQOKBlSwuhIFV41ZpjkjKaxXEPbNBVikLCIrf_1QmyhHe8fCJGckWgTbXESMyYl3UbvVxBUjeddXRoN_mSiXG5bfGUKZ0uTg8PXEF6se_S4tA6PrfXBtBWemXBvugZPbTuaW71q8TxYpyrAz0ZhhS-gBdfbf3Z8vn2c-gW4ytR153Frql4-NrYGVdx_K-fBqQDV6x7aKFXtYX9Vd9Hd-dnt5HIwu7mYTk5nA8U5CYOIlFIBJDRiQtJCijKlXHCVpwmROcmFTrXUrKAi1lRzFkslmY6KWEsepWnBd9HR0rtw9qkDH7LG-ALqWrVgO58xmsSERTQhPTpcov1XvHdQZgtnGuVeM0qy7xyyZQ7ZKod-4HDl7vIG9B_--_geOF4C_WD2YDvX9qf-Z_sC0kKVSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187025180</pqid></control><display><type>article</type><title>Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal–Aspergillus niger Bioleaching Strategy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Junzhi ; Wang, Lili ; Li, La ; Lv, Chunxiao ; Zatovsky, Igor V ; Han, Wei</creator><creatorcontrib>Li, Junzhi ; Wang, Lili ; Li, La ; Lv, Chunxiao ; Zatovsky, Igor V ; Han, Wei</creatorcontrib><description>The fabrication and design of electrodes that transfer more energy at high rates is very crucial for battery technology because of the increasing need for electrical energy storage. Usually, reducing a material’s volume expansion and improving its electrical conductivity can promote electron and Li+/Na+ ion transfer in nanostructured electrodes and improve rate capability and stability. Here, we demonstrate a general metal–Aspergillus niger bioleaching approach for preparing novel fungus-inspired electrode materials that may enable high-performance lithium ion/sodium ion batteries with one-dimensional architectures. The fungus functions as a natural template to provide large amounts of nitrogen/carbon sources, which are functionalized with metal sulfide nanoparticles, yielding various metal sulfide nanoparticles/nitrogen-doped carbonaceous fibers (MS/NCF (MS = ZnS, Co9S8, FeS, Cu1.81S)) with high conductivity. In addition, the as-obtained MS/NCF has a uniform fiber architecture and abundant porous structure, which can also enhance the storage ability for LIBs and SIBs. Taking ZnS/NCF as an example, the material exhibits a high specific capacity of up to 715.5 mAh g–1 (100 cycles) and 455 mAh g–1 (50 cycles) at 0.1 A g–1 for LIBs and SIBs, respectively. This versatile approach for employing a fungus as a sustainable template to form high-performance electrodes may provide a systematic platform for implementing advanced battery designs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b21976</identifier><identifier>PMID: 30722661</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-02, Vol.11 (8), p.8072-8080</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-50f6aee8152461c64f91343ab9806b0b4d9d6d2c147d1d3276a62d5c7d63599c3</citedby><cites>FETCH-LOGICAL-a330t-50f6aee8152461c64f91343ab9806b0b4d9d6d2c147d1d3276a62d5c7d63599c3</cites><orcidid>0000-0002-0422-4277 ; 0000-0002-4830-3487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30722661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junzhi</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Li, La</creatorcontrib><creatorcontrib>Lv, Chunxiao</creatorcontrib><creatorcontrib>Zatovsky, Igor V</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><title>Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal–Aspergillus niger Bioleaching Strategy</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The fabrication and design of electrodes that transfer more energy at high rates is very crucial for battery technology because of the increasing need for electrical energy storage. Usually, reducing a material’s volume expansion and improving its electrical conductivity can promote electron and Li+/Na+ ion transfer in nanostructured electrodes and improve rate capability and stability. Here, we demonstrate a general metal–Aspergillus niger bioleaching approach for preparing novel fungus-inspired electrode materials that may enable high-performance lithium ion/sodium ion batteries with one-dimensional architectures. The fungus functions as a natural template to provide large amounts of nitrogen/carbon sources, which are functionalized with metal sulfide nanoparticles, yielding various metal sulfide nanoparticles/nitrogen-doped carbonaceous fibers (MS/NCF (MS = ZnS, Co9S8, FeS, Cu1.81S)) with high conductivity. In addition, the as-obtained MS/NCF has a uniform fiber architecture and abundant porous structure, which can also enhance the storage ability for LIBs and SIBs. Taking ZnS/NCF as an example, the material exhibits a high specific capacity of up to 715.5 mAh g–1 (100 cycles) and 455 mAh g–1 (50 cycles) at 0.1 A g–1 for LIBs and SIBs, respectively. This versatile approach for employing a fungus as a sustainable template to form high-performance electrodes may provide a systematic platform for implementing advanced battery designs.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PwzAQhi0E4ntlRB4RUlt_xUk2aMVHpQJDYY6c-BIMSVxsB8TGb4B_yC8h0MLGdDc895zuXoQOKBlSwuhIFV41ZpjkjKaxXEPbNBVikLCIrf_1QmyhHe8fCJGckWgTbXESMyYl3UbvVxBUjeddXRoN_mSiXG5bfGUKZ0uTg8PXEF6se_S4tA6PrfXBtBWemXBvugZPbTuaW71q8TxYpyrAz0ZhhS-gBdfbf3Z8vn2c-gW4ytR153Frql4-NrYGVdx_K-fBqQDV6x7aKFXtYX9Vd9Hd-dnt5HIwu7mYTk5nA8U5CYOIlFIBJDRiQtJCijKlXHCVpwmROcmFTrXUrKAi1lRzFkslmY6KWEsepWnBd9HR0rtw9qkDH7LG-ALqWrVgO58xmsSERTQhPTpcov1XvHdQZgtnGuVeM0qy7xyyZQ7ZKod-4HDl7vIG9B_--_geOF4C_WD2YDvX9qf-Z_sC0kKVSA</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Li, Junzhi</creator><creator>Wang, Lili</creator><creator>Li, La</creator><creator>Lv, Chunxiao</creator><creator>Zatovsky, Igor V</creator><creator>Han, Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0422-4277</orcidid><orcidid>https://orcid.org/0000-0002-4830-3487</orcidid></search><sort><creationdate>20190227</creationdate><title>Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal–Aspergillus niger Bioleaching Strategy</title><author>Li, Junzhi ; Wang, Lili ; Li, La ; Lv, Chunxiao ; Zatovsky, Igor V ; Han, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-50f6aee8152461c64f91343ab9806b0b4d9d6d2c147d1d3276a62d5c7d63599c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junzhi</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Li, La</creatorcontrib><creatorcontrib>Lv, Chunxiao</creatorcontrib><creatorcontrib>Zatovsky, Igor V</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junzhi</au><au>Wang, Lili</au><au>Li, La</au><au>Lv, Chunxiao</au><au>Zatovsky, Igor V</au><au>Han, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal–Aspergillus niger Bioleaching Strategy</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-02-27</date><risdate>2019</risdate><volume>11</volume><issue>8</issue><spage>8072</spage><epage>8080</epage><pages>8072-8080</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The fabrication and design of electrodes that transfer more energy at high rates is very crucial for battery technology because of the increasing need for electrical energy storage. Usually, reducing a material’s volume expansion and improving its electrical conductivity can promote electron and Li+/Na+ ion transfer in nanostructured electrodes and improve rate capability and stability. Here, we demonstrate a general metal–Aspergillus niger bioleaching approach for preparing novel fungus-inspired electrode materials that may enable high-performance lithium ion/sodium ion batteries with one-dimensional architectures. The fungus functions as a natural template to provide large amounts of nitrogen/carbon sources, which are functionalized with metal sulfide nanoparticles, yielding various metal sulfide nanoparticles/nitrogen-doped carbonaceous fibers (MS/NCF (MS = ZnS, Co9S8, FeS, Cu1.81S)) with high conductivity. In addition, the as-obtained MS/NCF has a uniform fiber architecture and abundant porous structure, which can also enhance the storage ability for LIBs and SIBs. Taking ZnS/NCF as an example, the material exhibits a high specific capacity of up to 715.5 mAh g–1 (100 cycles) and 455 mAh g–1 (50 cycles) at 0.1 A g–1 for LIBs and SIBs, respectively. This versatile approach for employing a fungus as a sustainable template to form high-performance electrodes may provide a systematic platform for implementing advanced battery designs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30722661</pmid><doi>10.1021/acsami.8b21976</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0422-4277</orcidid><orcidid>https://orcid.org/0000-0002-4830-3487</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-02, Vol.11 (8), p.8072-8080
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2187025180
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Metal Sulfides@Carbon Microfiber Networks for Boosting Lithium Ion/Sodium Ion Storage via a General Metal–Aspergillus niger Bioleaching Strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20Sulfides@Carbon%20Microfiber%20Networks%20for%20Boosting%20Lithium%20Ion/Sodium%20Ion%20Storage%20via%20a%20General%20Metal%E2%80%93Aspergillus%20niger%20Bioleaching%20Strategy&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Junzhi&rft.date=2019-02-27&rft.volume=11&rft.issue=8&rft.spage=8072&rft.epage=8080&rft.pages=8072-8080&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b21976&rft_dat=%3Cproquest_cross%3E2187025180%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-50f6aee8152461c64f91343ab9806b0b4d9d6d2c147d1d3276a62d5c7d63599c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187025180&rft_id=info:pmid/30722661&rfr_iscdi=true