Loading…

Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells

The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current to...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2019-02, Vol.13 (2), p.1403-1411, Article acsnano.8b07024
Main Authors: Lussier, Félix, Missirlis, Dimitris, Spatz, Joachim P, Masson, Jean-François
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3
cites cdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3
container_end_page 1411
container_issue 2
container_start_page 1403
container_title ACS nano
container_volume 13
creator Lussier, Félix
Missirlis, Dimitris
Spatz, Joachim P
Masson, Jean-François
description The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.
doi_str_mv 10.1021/acsnano.8b07024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187032648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187032648</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMozq9n36SPglSTpm3aR5nzAzaFqeBbuUtvt0iX1CQVB_7xRjb35lMO4XfOvfcQcsroJaMJuwLpNGhzWcyooEm6Qw5YyfOYFvnb7lZnbEAOnXunNBOFyPfJgFORpFSUB-R7AnKhNMZjBKuVnsc3Vn2ijp5724DEeKQXoCXW0RSWEL4leI82gNFT5023WDllWjNfRVP8RGhdNOlbr7oWv4Jngh5mplUeozsLtULtXfQYJkVDbFt3TPaaYMGTzXtEXm9HL8P7ePx09zC8HsfAy9LHTSoEpRxrXnKgOcsaYGmTCeAzXkqRNiibgrOMBpEKVudlgpgGmVGRlQXyI3K-zu2s-ejR-WqpnAwbgEbTuyphhaA8ydMioFdrVFrjnMWm6qxagl1VjFa_lVebyqtN5cFxtgnvZ0ust_xfxwG4WAPBWb2b3upw679xP6-Wjo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187032648</pqid></control><display><type>article</type><title>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lussier, Félix ; Missirlis, Dimitris ; Spatz, Joachim P ; Masson, Jean-François</creator><creatorcontrib>Lussier, Félix ; Missirlis, Dimitris ; Spatz, Joachim P ; Masson, Jean-François</creatorcontrib><description>The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b07024</identifier><identifier>PMID: 30724079</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.1403-1411, Article acsnano.8b07024</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</citedby><cites>FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</cites><orcidid>0000-0002-9499-7993 ; 0000-0003-1874-676X ; 0000-0003-3419-9807 ; 0000-0002-0101-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30724079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lussier, Félix</creatorcontrib><creatorcontrib>Missirlis, Dimitris</creatorcontrib><creatorcontrib>Spatz, Joachim P</creatorcontrib><creatorcontrib>Masson, Jean-François</creatorcontrib><title>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMozq9n36SPglSTpm3aR5nzAzaFqeBbuUtvt0iX1CQVB_7xRjb35lMO4XfOvfcQcsroJaMJuwLpNGhzWcyooEm6Qw5YyfOYFvnb7lZnbEAOnXunNBOFyPfJgFORpFSUB-R7AnKhNMZjBKuVnsc3Vn2ijp5724DEeKQXoCXW0RSWEL4leI82gNFT5023WDllWjNfRVP8RGhdNOlbr7oWv4Jngh5mplUeozsLtULtXfQYJkVDbFt3TPaaYMGTzXtEXm9HL8P7ePx09zC8HsfAy9LHTSoEpRxrXnKgOcsaYGmTCeAzXkqRNiibgrOMBpEKVudlgpgGmVGRlQXyI3K-zu2s-ejR-WqpnAwbgEbTuyphhaA8ydMioFdrVFrjnMWm6qxagl1VjFa_lVebyqtN5cFxtgnvZ0ust_xfxwG4WAPBWb2b3upw679xP6-Wjo8</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Lussier, Félix</creator><creator>Missirlis, Dimitris</creator><creator>Spatz, Joachim P</creator><creator>Masson, Jean-François</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9499-7993</orcidid><orcidid>https://orcid.org/0000-0003-1874-676X</orcidid><orcidid>https://orcid.org/0000-0003-3419-9807</orcidid><orcidid>https://orcid.org/0000-0002-0101-0468</orcidid></search><sort><creationdate>20190226</creationdate><title>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</title><author>Lussier, Félix ; Missirlis, Dimitris ; Spatz, Joachim P ; Masson, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lussier, Félix</creatorcontrib><creatorcontrib>Missirlis, Dimitris</creatorcontrib><creatorcontrib>Spatz, Joachim P</creatorcontrib><creatorcontrib>Masson, Jean-François</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lussier, Félix</au><au>Missirlis, Dimitris</au><au>Spatz, Joachim P</au><au>Masson, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>1403</spage><epage>1411</epage><pages>1403-1411</pages><artnum>acsnano.8b07024</artnum><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30724079</pmid><doi>10.1021/acsnano.8b07024</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9499-7993</orcidid><orcidid>https://orcid.org/0000-0003-1874-676X</orcidid><orcidid>https://orcid.org/0000-0003-3419-9807</orcidid><orcidid>https://orcid.org/0000-0002-0101-0468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-02, Vol.13 (2), p.1403-1411, Article acsnano.8b07024
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2187032648
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-Learning-Driven%20Surface-Enhanced%20Raman%20Scattering%20Optophysiology%20Reveals%20Multiplexed%20Metabolite%20Gradients%20Near%20Cells&rft.jtitle=ACS%20nano&rft.au=Lussier,%20Fe%CC%81lix&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=1403&rft.epage=1411&rft.pages=1403-1411&rft.artnum=acsnano.8b07024&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b07024&rft_dat=%3Cproquest_cross%3E2187032648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187032648&rft_id=info:pmid/30724079&rfr_iscdi=true