Loading…
Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells
The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current to...
Saved in:
Published in: | ACS nano 2019-02, Vol.13 (2), p.1403-1411, Article acsnano.8b07024 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3 |
container_end_page | 1411 |
container_issue | 2 |
container_start_page | 1403 |
container_title | ACS nano |
container_volume | 13 |
creator | Lussier, Félix Missirlis, Dimitris Spatz, Joachim P Masson, Jean-François |
description | The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology. |
doi_str_mv | 10.1021/acsnano.8b07024 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2187032648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187032648</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMozq9n36SPglSTpm3aR5nzAzaFqeBbuUtvt0iX1CQVB_7xRjb35lMO4XfOvfcQcsroJaMJuwLpNGhzWcyooEm6Qw5YyfOYFvnb7lZnbEAOnXunNBOFyPfJgFORpFSUB-R7AnKhNMZjBKuVnsc3Vn2ijp5724DEeKQXoCXW0RSWEL4leI82gNFT5023WDllWjNfRVP8RGhdNOlbr7oWv4Jngh5mplUeozsLtULtXfQYJkVDbFt3TPaaYMGTzXtEXm9HL8P7ePx09zC8HsfAy9LHTSoEpRxrXnKgOcsaYGmTCeAzXkqRNiibgrOMBpEKVudlgpgGmVGRlQXyI3K-zu2s-ejR-WqpnAwbgEbTuyphhaA8ydMioFdrVFrjnMWm6qxagl1VjFa_lVebyqtN5cFxtgnvZ0ust_xfxwG4WAPBWb2b3upw679xP6-Wjo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187032648</pqid></control><display><type>article</type><title>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lussier, Félix ; Missirlis, Dimitris ; Spatz, Joachim P ; Masson, Jean-François</creator><creatorcontrib>Lussier, Félix ; Missirlis, Dimitris ; Spatz, Joachim P ; Masson, Jean-François</creatorcontrib><description>The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b07024</identifier><identifier>PMID: 30724079</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.1403-1411, Article acsnano.8b07024</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</citedby><cites>FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</cites><orcidid>0000-0002-9499-7993 ; 0000-0003-1874-676X ; 0000-0003-3419-9807 ; 0000-0002-0101-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30724079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lussier, Félix</creatorcontrib><creatorcontrib>Missirlis, Dimitris</creatorcontrib><creatorcontrib>Spatz, Joachim P</creatorcontrib><creatorcontrib>Masson, Jean-François</creatorcontrib><title>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMozq9n36SPglSTpm3aR5nzAzaFqeBbuUtvt0iX1CQVB_7xRjb35lMO4XfOvfcQcsroJaMJuwLpNGhzWcyooEm6Qw5YyfOYFvnb7lZnbEAOnXunNBOFyPfJgFORpFSUB-R7AnKhNMZjBKuVnsc3Vn2ijp5724DEeKQXoCXW0RSWEL4leI82gNFT5023WDllWjNfRVP8RGhdNOlbr7oWv4Jngh5mplUeozsLtULtXfQYJkVDbFt3TPaaYMGTzXtEXm9HL8P7ePx09zC8HsfAy9LHTSoEpRxrXnKgOcsaYGmTCeAzXkqRNiibgrOMBpEKVudlgpgGmVGRlQXyI3K-zu2s-ejR-WqpnAwbgEbTuyphhaA8ydMioFdrVFrjnMWm6qxagl1VjFa_lVebyqtN5cFxtgnvZ0ust_xfxwG4WAPBWb2b3upw679xP6-Wjo8</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Lussier, Félix</creator><creator>Missirlis, Dimitris</creator><creator>Spatz, Joachim P</creator><creator>Masson, Jean-François</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9499-7993</orcidid><orcidid>https://orcid.org/0000-0003-1874-676X</orcidid><orcidid>https://orcid.org/0000-0003-3419-9807</orcidid><orcidid>https://orcid.org/0000-0002-0101-0468</orcidid></search><sort><creationdate>20190226</creationdate><title>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</title><author>Lussier, Félix ; Missirlis, Dimitris ; Spatz, Joachim P ; Masson, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lussier, Félix</creatorcontrib><creatorcontrib>Missirlis, Dimitris</creatorcontrib><creatorcontrib>Spatz, Joachim P</creatorcontrib><creatorcontrib>Masson, Jean-François</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lussier, Félix</au><au>Missirlis, Dimitris</au><au>Spatz, Joachim P</au><au>Masson, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>1403</spage><epage>1411</epage><pages>1403-1411</pages><artnum>acsnano.8b07024</artnum><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The extracellular environment is a complex medium in which cells secrete and consume metabolites. Molecular gradients are thereby created near cells, triggering various biological and physiological responses. However, investigating these molecular gradients remains challenging because the current tools are ill-suited and provide poor temporal and special resolution while also being destructive. Herein, we report the development and application of a machine learning approach in combination with a surface-enhanced Raman spectroscopy (SERS) nanoprobe to measure simultaneously the gradients of at least eight metabolites in vitro near different cell lines. We found significant increase in the secretion or consumption of lactate, glucose, ATP, glutamine, and urea within 20 μm from the cells surface compared to the bulk. We also observed that cancerous cells (HeLa) compared to fibroblasts (REF52) have a greater glycolytic rate, as is expected for this phenotype. Endothelial (HUVEC) and HeLa cells exhibited significant increase in extracellular ATP compared to the control, shining light on the implication of extracellular ATP within the cancer local environment. Machine-learning-driven SERS optophysiology is generally applicable to metabolites involved in cellular processes, providing a general platform on which to study cell biology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30724079</pmid><doi>10.1021/acsnano.8b07024</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9499-7993</orcidid><orcidid>https://orcid.org/0000-0003-1874-676X</orcidid><orcidid>https://orcid.org/0000-0003-3419-9807</orcidid><orcidid>https://orcid.org/0000-0002-0101-0468</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2019-02, Vol.13 (2), p.1403-1411, Article acsnano.8b07024 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2187032648 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-Learning-Driven%20Surface-Enhanced%20Raman%20Scattering%20Optophysiology%20Reveals%20Multiplexed%20Metabolite%20Gradients%20Near%20Cells&rft.jtitle=ACS%20nano&rft.au=Lussier,%20Fe%CC%81lix&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=1403&rft.epage=1411&rft.pages=1403-1411&rft.artnum=acsnano.8b07024&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b07024&rft_dat=%3Cproquest_cross%3E2187032648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-f477003ed393a0615fa14f57a3b39c74fecf83150fec471d692ee4c47507598e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187032648&rft_id=info:pmid/30724079&rfr_iscdi=true |