Loading…
Experimental Evidence for a State-Point-Dependent Density-Scaling Exponent of Liquid Dynamics
A large class of liquids obey density scaling characterized by an exponent, which quantifies the relative roles of temperature and density for the dynamics. We present experimental evidence that the density-scaling exponent γ is state-point dependent for the glass formers tetramethyl-tetraphenyl-tri...
Saved in:
Published in: | Physical review letters 2019-02, Vol.122 (5), p.055501-055501, Article 055501 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A large class of liquids obey density scaling characterized by an exponent, which quantifies the relative roles of temperature and density for the dynamics. We present experimental evidence that the density-scaling exponent γ is state-point dependent for the glass formers tetramethyl-tetraphenyl-trisiloxane (DC704) and 5-polyphenyl ether (5PPE). A method is proposed that from dynamic and thermodynamic properties at equilibrium estimates the value of γ. The method applies at any state point of the pressure-temperature plane, both in the supercooled and the normal liquid regimes. We find that γ is generally state-point dependent, which is confirmed by reanalyzing data for 20 metallic liquids and two model liquids. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.055501 |