Loading…

Biomimetic Hydroxyapatite a Potential Universal Nanocarrier for Cellular Internalization & Drug Delivery

Purpose Functional biomaterials can be used as drug loading devices, components for tissue engineering or as biological probes. As such, the design, synthesis and evaluation of a variety of local-drug delivery structures has been undertaken over the past few decades with the ultimate aim of providin...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical research 2019-04, Vol.36 (4), p.60-12, Article 60
Main Authors: Srivastav, Ashu, Chandanshive, Balasaheb, Dandekar, Prajakta, Khushalani, Deepa, Jain, Ratnesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Functional biomaterials can be used as drug loading devices, components for tissue engineering or as biological probes. As such, the design, synthesis and evaluation of a variety of local-drug delivery structures has been undertaken over the past few decades with the ultimate aim of providing materials that can encapsulate a diverse array of drugs (in terms of their sizes, chemical compositions and chemical natures ( i.e. hydrophilic/hydrophobic). Methods Presented here is the evaluation of specifically hollow 1D structures consisting of nanotubes (NTs) of HAp and their efficacy for cellular internalization using two distinguished anti-cancer model drugs: Paclitaxel (hydrophobic) and Doxorubicin hydrochloride (hydrophilic). Results Importantly, it has been observed through this work that HAp NTs consistently showed not only higher drug loading capacity as compared to HAp nanospheres (NSs) but also had better efficacy with respect to cell internalization/encapsulation. The highly porous structure, with large surface area of nanotube morphology, gave the advantage of targeted delivery due to its high drug loading and retention capacity. This was done using the very simple techniques of physical adsorption to load the drug/dye molecules and therefore this can be universally applied to a diverse array of molecules. Conclusions Our synthesized nanocarrier can be widely employed in biomedical applications due to its bio-compatible, bio-active and biodegradable properties and as such can be considered to be a universal carrier. Graphical Abstract Schematic representation for a comparative study of hydroxyapatite (hollow nanotubes vs solid nanospheres) with variety of drug/ dye molecules
ISSN:0724-8741
1573-904X
DOI:10.1007/s11095-019-2594-7