Loading…

Gene-Embedded Nanostructural Biotic–Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording

Optogenetics is a recently established neuromodulation technique in which photostimulation is used to manipulate neurons with high temporal and spatial precision. However, sequential genetic and optical insertion with double brain implantation tends to cause excessive tissue damage. In addition, the...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-03, Vol.11 (12), p.11270-11282
Main Authors: Huang, Wei-Chen, Chi, Hui-Shang, Lee, Yi-Chao, Lo, Yu-Chun, Liu, Ta-Chung, Chiang, Min-Yu, Chen, Hsu-Yan, Li, Ssu-Ju, Chen, You-Yin, Chen, San-Yuan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-56945305aa1d230cba2aed36df6891f2891878ed74313dcc5c43ec30bb94be1c3
cites cdi_FETCH-LOGICAL-a330t-56945305aa1d230cba2aed36df6891f2891878ed74313dcc5c43ec30bb94be1c3
container_end_page 11282
container_issue 12
container_start_page 11270
container_title ACS applied materials & interfaces
container_volume 11
creator Huang, Wei-Chen
Chi, Hui-Shang
Lee, Yi-Chao
Lo, Yu-Chun
Liu, Ta-Chung
Chiang, Min-Yu
Chen, Hsu-Yan
Li, Ssu-Ju
Chen, You-Yin
Chen, San-Yuan
description Optogenetics is a recently established neuromodulation technique in which photostimulation is used to manipulate neurons with high temporal and spatial precision. However, sequential genetic and optical insertion with double brain implantation tends to cause excessive tissue damage. In addition, the incorporation of light-sensitive genes requires the utilization of viral vectors, which remains a safety concern. Here, by combining device fabrication design, nanotechnology, and cell targeting technology, we developed a new gene-embedded optoelectrode array for neural implantation to enable spatiotemporal electroporation (EP) for gene delivery/transfection, photomodulation, and synchronous electrical monitoring of neural signals in the brain via one-time implantation. A biotic–abiotic neural interface (called PG) composed of reduced graphene oxide and conductive polyelectrolyte 3,4-ethylenedioxythiophene-modified amphiphilic chitosan was developed to form a nanostructural hydrogel with assembled nanodomains for encapsulating nonviral gene vectors (called PEI–NT–pDNA) formulated by neurotensin (NT) and polyethylenimine (PEI)-coupled plasmid DNA (pDNA). The PG can maintain high charge storage ability to respond to a minimal current of 125 μA for controllable gene delivery. The in vitro analysis of PG–PEI–NT–pDNA on the microelectrode array chip showed that the microelectrodes provided electrically inductive electropermeabilization, which permitted gene transfection into localized rat adrenal pheochromocytoma cells with a strong green fluorescent protein expression that was up to 8-fold higher than that in nontreated cells. Furthermore, the in vivo implantation enabled on-demand spatiotemporal gene transfection to neurons with 10-fold enhancement of targeting ability compared with astrocytes. Finally, using the real optogenetic opsin channelrhodopsin-2, the flexible neural probe incorporated with an optical waveguide fiber displayed photoevoked extracellular spikes in the thalamic ventrobasal region after focal EP for only 7 days, which provided a proof of concept for the use of photomodulation to facilitate neural therapies.
doi_str_mv 10.1021/acsami.9b03264
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2189539569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189539569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-56945305aa1d230cba2aed36df6891f2891878ed74313dcc5c43ec30bb94be1c3</originalsourceid><addsrcrecordid>eNp1kDtPwzAQxy0EoqWwMqKMCCnFr6TJ2FblISGQeMyRY1-Kq8QOdjJ0Y2XmG_JJMG1hY7m74f84_RA6JXhMMCWXQnrR6HFeYkZTvoeGJOc8zmhC9_9uzgfoyPsVximjODlEA4YzzilLhujjGgzEi6YEpUBF98JY37ledr0TdTTTttPy6_1zWm6u6KHtLNQgO2cVRFPnxNpH07atdTBX1kVPayNfnTW299HMCW02lmUoCXYfCRM6YJP9pJcmrEeQ1iltlsfooBK1h5PdHqGXq8Xz_Ca-e7i-nU_vYsEY7uIkzXnCcCIEUZRhWQoqQLFUVWmWk4qGkU0yUBPOCFNSJpIzkAyXZc5LIJKN0Pk2t3X2rQffFY32EupaGAhfF5RkecLy0BOk461UOuu9g6ponW6EWxcEFz_4iy3-Yoc_GM522X3ZgPqT__IOgoutIBiLle1dQOD_S_sGge6TRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189539569</pqid></control><display><type>article</type><title>Gene-Embedded Nanostructural Biotic–Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Huang, Wei-Chen ; Chi, Hui-Shang ; Lee, Yi-Chao ; Lo, Yu-Chun ; Liu, Ta-Chung ; Chiang, Min-Yu ; Chen, Hsu-Yan ; Li, Ssu-Ju ; Chen, You-Yin ; Chen, San-Yuan</creator><creatorcontrib>Huang, Wei-Chen ; Chi, Hui-Shang ; Lee, Yi-Chao ; Lo, Yu-Chun ; Liu, Ta-Chung ; Chiang, Min-Yu ; Chen, Hsu-Yan ; Li, Ssu-Ju ; Chen, You-Yin ; Chen, San-Yuan</creatorcontrib><description>Optogenetics is a recently established neuromodulation technique in which photostimulation is used to manipulate neurons with high temporal and spatial precision. However, sequential genetic and optical insertion with double brain implantation tends to cause excessive tissue damage. In addition, the incorporation of light-sensitive genes requires the utilization of viral vectors, which remains a safety concern. Here, by combining device fabrication design, nanotechnology, and cell targeting technology, we developed a new gene-embedded optoelectrode array for neural implantation to enable spatiotemporal electroporation (EP) for gene delivery/transfection, photomodulation, and synchronous electrical monitoring of neural signals in the brain via one-time implantation. A biotic–abiotic neural interface (called PG) composed of reduced graphene oxide and conductive polyelectrolyte 3,4-ethylenedioxythiophene-modified amphiphilic chitosan was developed to form a nanostructural hydrogel with assembled nanodomains for encapsulating nonviral gene vectors (called PEI–NT–pDNA) formulated by neurotensin (NT) and polyethylenimine (PEI)-coupled plasmid DNA (pDNA). The PG can maintain high charge storage ability to respond to a minimal current of 125 μA for controllable gene delivery. The in vitro analysis of PG–PEI–NT–pDNA on the microelectrode array chip showed that the microelectrodes provided electrically inductive electropermeabilization, which permitted gene transfection into localized rat adrenal pheochromocytoma cells with a strong green fluorescent protein expression that was up to 8-fold higher than that in nontreated cells. Furthermore, the in vivo implantation enabled on-demand spatiotemporal gene transfection to neurons with 10-fold enhancement of targeting ability compared with astrocytes. Finally, using the real optogenetic opsin channelrhodopsin-2, the flexible neural probe incorporated with an optical waveguide fiber displayed photoevoked extracellular spikes in the thalamic ventrobasal region after focal EP for only 7 days, which provided a proof of concept for the use of photomodulation to facilitate neural therapies.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b03264</identifier><identifier>PMID: 30844235</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-03, Vol.11 (12), p.11270-11282</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-56945305aa1d230cba2aed36df6891f2891878ed74313dcc5c43ec30bb94be1c3</citedby><cites>FETCH-LOGICAL-a330t-56945305aa1d230cba2aed36df6891f2891878ed74313dcc5c43ec30bb94be1c3</cites><orcidid>0000-0002-2772-0468 ; 0000-0002-6500-2993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30844235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Wei-Chen</creatorcontrib><creatorcontrib>Chi, Hui-Shang</creatorcontrib><creatorcontrib>Lee, Yi-Chao</creatorcontrib><creatorcontrib>Lo, Yu-Chun</creatorcontrib><creatorcontrib>Liu, Ta-Chung</creatorcontrib><creatorcontrib>Chiang, Min-Yu</creatorcontrib><creatorcontrib>Chen, Hsu-Yan</creatorcontrib><creatorcontrib>Li, Ssu-Ju</creatorcontrib><creatorcontrib>Chen, You-Yin</creatorcontrib><creatorcontrib>Chen, San-Yuan</creatorcontrib><title>Gene-Embedded Nanostructural Biotic–Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Optogenetics is a recently established neuromodulation technique in which photostimulation is used to manipulate neurons with high temporal and spatial precision. However, sequential genetic and optical insertion with double brain implantation tends to cause excessive tissue damage. In addition, the incorporation of light-sensitive genes requires the utilization of viral vectors, which remains a safety concern. Here, by combining device fabrication design, nanotechnology, and cell targeting technology, we developed a new gene-embedded optoelectrode array for neural implantation to enable spatiotemporal electroporation (EP) for gene delivery/transfection, photomodulation, and synchronous electrical monitoring of neural signals in the brain via one-time implantation. A biotic–abiotic neural interface (called PG) composed of reduced graphene oxide and conductive polyelectrolyte 3,4-ethylenedioxythiophene-modified amphiphilic chitosan was developed to form a nanostructural hydrogel with assembled nanodomains for encapsulating nonviral gene vectors (called PEI–NT–pDNA) formulated by neurotensin (NT) and polyethylenimine (PEI)-coupled plasmid DNA (pDNA). The PG can maintain high charge storage ability to respond to a minimal current of 125 μA for controllable gene delivery. The in vitro analysis of PG–PEI–NT–pDNA on the microelectrode array chip showed that the microelectrodes provided electrically inductive electropermeabilization, which permitted gene transfection into localized rat adrenal pheochromocytoma cells with a strong green fluorescent protein expression that was up to 8-fold higher than that in nontreated cells. Furthermore, the in vivo implantation enabled on-demand spatiotemporal gene transfection to neurons with 10-fold enhancement of targeting ability compared with astrocytes. Finally, using the real optogenetic opsin channelrhodopsin-2, the flexible neural probe incorporated with an optical waveguide fiber displayed photoevoked extracellular spikes in the thalamic ventrobasal region after focal EP for only 7 days, which provided a proof of concept for the use of photomodulation to facilitate neural therapies.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAQxy0EoqWwMqKMCCnFr6TJ2FblISGQeMyRY1-Kq8QOdjJ0Y2XmG_JJMG1hY7m74f84_RA6JXhMMCWXQnrR6HFeYkZTvoeGJOc8zmhC9_9uzgfoyPsVximjODlEA4YzzilLhujjGgzEi6YEpUBF98JY37ledr0TdTTTttPy6_1zWm6u6KHtLNQgO2cVRFPnxNpH07atdTBX1kVPayNfnTW299HMCW02lmUoCXYfCRM6YJP9pJcmrEeQ1iltlsfooBK1h5PdHqGXq8Xz_Ca-e7i-nU_vYsEY7uIkzXnCcCIEUZRhWQoqQLFUVWmWk4qGkU0yUBPOCFNSJpIzkAyXZc5LIJKN0Pk2t3X2rQffFY32EupaGAhfF5RkecLy0BOk461UOuu9g6ponW6EWxcEFz_4iy3-Yoc_GM522X3ZgPqT__IOgoutIBiLle1dQOD_S_sGge6TRw</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Huang, Wei-Chen</creator><creator>Chi, Hui-Shang</creator><creator>Lee, Yi-Chao</creator><creator>Lo, Yu-Chun</creator><creator>Liu, Ta-Chung</creator><creator>Chiang, Min-Yu</creator><creator>Chen, Hsu-Yan</creator><creator>Li, Ssu-Ju</creator><creator>Chen, You-Yin</creator><creator>Chen, San-Yuan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2772-0468</orcidid><orcidid>https://orcid.org/0000-0002-6500-2993</orcidid></search><sort><creationdate>20190327</creationdate><title>Gene-Embedded Nanostructural Biotic–Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording</title><author>Huang, Wei-Chen ; Chi, Hui-Shang ; Lee, Yi-Chao ; Lo, Yu-Chun ; Liu, Ta-Chung ; Chiang, Min-Yu ; Chen, Hsu-Yan ; Li, Ssu-Ju ; Chen, You-Yin ; Chen, San-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-56945305aa1d230cba2aed36df6891f2891878ed74313dcc5c43ec30bb94be1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei-Chen</creatorcontrib><creatorcontrib>Chi, Hui-Shang</creatorcontrib><creatorcontrib>Lee, Yi-Chao</creatorcontrib><creatorcontrib>Lo, Yu-Chun</creatorcontrib><creatorcontrib>Liu, Ta-Chung</creatorcontrib><creatorcontrib>Chiang, Min-Yu</creatorcontrib><creatorcontrib>Chen, Hsu-Yan</creatorcontrib><creatorcontrib>Li, Ssu-Ju</creatorcontrib><creatorcontrib>Chen, You-Yin</creatorcontrib><creatorcontrib>Chen, San-Yuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wei-Chen</au><au>Chi, Hui-Shang</au><au>Lee, Yi-Chao</au><au>Lo, Yu-Chun</au><au>Liu, Ta-Chung</au><au>Chiang, Min-Yu</au><au>Chen, Hsu-Yan</au><au>Li, Ssu-Ju</au><au>Chen, You-Yin</au><au>Chen, San-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene-Embedded Nanostructural Biotic–Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>11</volume><issue>12</issue><spage>11270</spage><epage>11282</epage><pages>11270-11282</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Optogenetics is a recently established neuromodulation technique in which photostimulation is used to manipulate neurons with high temporal and spatial precision. However, sequential genetic and optical insertion with double brain implantation tends to cause excessive tissue damage. In addition, the incorporation of light-sensitive genes requires the utilization of viral vectors, which remains a safety concern. Here, by combining device fabrication design, nanotechnology, and cell targeting technology, we developed a new gene-embedded optoelectrode array for neural implantation to enable spatiotemporal electroporation (EP) for gene delivery/transfection, photomodulation, and synchronous electrical monitoring of neural signals in the brain via one-time implantation. A biotic–abiotic neural interface (called PG) composed of reduced graphene oxide and conductive polyelectrolyte 3,4-ethylenedioxythiophene-modified amphiphilic chitosan was developed to form a nanostructural hydrogel with assembled nanodomains for encapsulating nonviral gene vectors (called PEI–NT–pDNA) formulated by neurotensin (NT) and polyethylenimine (PEI)-coupled plasmid DNA (pDNA). The PG can maintain high charge storage ability to respond to a minimal current of 125 μA for controllable gene delivery. The in vitro analysis of PG–PEI–NT–pDNA on the microelectrode array chip showed that the microelectrodes provided electrically inductive electropermeabilization, which permitted gene transfection into localized rat adrenal pheochromocytoma cells with a strong green fluorescent protein expression that was up to 8-fold higher than that in nontreated cells. Furthermore, the in vivo implantation enabled on-demand spatiotemporal gene transfection to neurons with 10-fold enhancement of targeting ability compared with astrocytes. Finally, using the real optogenetic opsin channelrhodopsin-2, the flexible neural probe incorporated with an optical waveguide fiber displayed photoevoked extracellular spikes in the thalamic ventrobasal region after focal EP for only 7 days, which provided a proof of concept for the use of photomodulation to facilitate neural therapies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30844235</pmid><doi>10.1021/acsami.9b03264</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2772-0468</orcidid><orcidid>https://orcid.org/0000-0002-6500-2993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-03, Vol.11 (12), p.11270-11282
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2189539569
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Gene-Embedded Nanostructural Biotic–Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene-Embedded%20Nanostructural%20Biotic%E2%80%93Abiotic%20Optoelectrode%20Arrays%20Applied%20for%20Synchronous%20Brain%20Optogenetics%20and%20Neural%20Signal%20Recording&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Huang,%20Wei-Chen&rft.date=2019-03-27&rft.volume=11&rft.issue=12&rft.spage=11270&rft.epage=11282&rft.pages=11270-11282&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b03264&rft_dat=%3Cproquest_cross%3E2189539569%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-56945305aa1d230cba2aed36df6891f2891878ed74313dcc5c43ec30bb94be1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189539569&rft_id=info:pmid/30844235&rfr_iscdi=true