Loading…
Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics
Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipul...
Saved in:
Published in: | Physical review letters 2019-02, Vol.122 (7), p.077203-077203, Article 077203 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143 |
---|---|
cites | cdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143 |
container_end_page | 077203 |
container_issue | 7 |
container_start_page | 077203 |
container_title | Physical review letters |
container_volume | 122 |
creator | Shao, Ding-Fu Gurung, Gautam Zhang, Shu-Hui Tsymbal, Evgeny Y |
description | Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics. |
doi_str_mv | 10.1103/PhysRevLett.122.077203 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2189543387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187004410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_Qlnw4mXrJJMmu8fS-gX1A63nJc0mNWW7qclW6L93S6uIp5mB530ZHkL6FAaUAl6_fGzjq_mamqYZUMYGICUDPCJdCjJPJaX8mHQBkKY5gOyQsxiXAECZyE5JByHjmeB5l0wmLiidPPlSVcnU1SZ5NE27Wh-SmV_7yi-cbu9R3ThrQvArtahN43TytnZ1E3ztdDwnJ1ZV0VwcZo-8397Mxvfp9PnuYTyapnoIokkxR8F5iRKQCWVgjnyuLeaWMWtspoVFJdrPjJiXyIaU59yiVKzUVoGhHHvkat-7Dv5zY2JTrFzUpqpUbfwmFoxm-ZAjZrJFL_-hS78JdfvdjpIAnLcae0TsKR18jMHYYh3cSoVtQaHYeS7-eC5az8XecxvsH-o385Upf2M_YvEbBpx7Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187004410</pqid></control><display><type>article</type><title>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Shao, Ding-Fu ; Gurung, Gautam ; Zhang, Shu-Hui ; Tsymbal, Evgeny Y</creator><creatorcontrib>Shao, Ding-Fu ; Gurung, Gautam ; Zhang, Shu-Hui ; Tsymbal, Evgeny Y</creatorcontrib><description>Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.077203</identifier><identifier>PMID: 30848649</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Antiferromagnetism ; Density functional theory ; Electrical resistivity ; Electron spin ; Electron states ; First principles ; Mathematical analysis ; Spintronics ; Torque ; Transport properties</subject><ispartof>Physical review letters, 2019-02, Vol.122 (7), p.077203-077203, Article 077203</ispartof><rights>Copyright American Physical Society Feb 22, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</citedby><cites>FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30848649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Ding-Fu</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Zhang, Shu-Hui</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y</creatorcontrib><title>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.</description><subject>Antiferromagnetism</subject><subject>Density functional theory</subject><subject>Electrical resistivity</subject><subject>Electron spin</subject><subject>Electron states</subject><subject>First principles</subject><subject>Mathematical analysis</subject><subject>Spintronics</subject><subject>Torque</subject><subject>Transport properties</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_Qlnw4mXrJJMmu8fS-gX1A63nJc0mNWW7qclW6L93S6uIp5mB530ZHkL6FAaUAl6_fGzjq_mamqYZUMYGICUDPCJdCjJPJaX8mHQBkKY5gOyQsxiXAECZyE5JByHjmeB5l0wmLiidPPlSVcnU1SZ5NE27Wh-SmV_7yi-cbu9R3ThrQvArtahN43TytnZ1E3ztdDwnJ1ZV0VwcZo-8397Mxvfp9PnuYTyapnoIokkxR8F5iRKQCWVgjnyuLeaWMWtspoVFJdrPjJiXyIaU59yiVKzUVoGhHHvkat-7Dv5zY2JTrFzUpqpUbfwmFoxm-ZAjZrJFL_-hS78JdfvdjpIAnLcae0TsKR18jMHYYh3cSoVtQaHYeS7-eC5az8XecxvsH-o385Upf2M_YvEbBpx7Cw</recordid><startdate>20190222</startdate><enddate>20190222</enddate><creator>Shao, Ding-Fu</creator><creator>Gurung, Gautam</creator><creator>Zhang, Shu-Hui</creator><creator>Tsymbal, Evgeny Y</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190222</creationdate><title>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</title><author>Shao, Ding-Fu ; Gurung, Gautam ; Zhang, Shu-Hui ; Tsymbal, Evgeny Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Density functional theory</topic><topic>Electrical resistivity</topic><topic>Electron spin</topic><topic>Electron states</topic><topic>First principles</topic><topic>Mathematical analysis</topic><topic>Spintronics</topic><topic>Torque</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Ding-Fu</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Zhang, Shu-Hui</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Ding-Fu</au><au>Gurung, Gautam</au><au>Zhang, Shu-Hui</au><au>Tsymbal, Evgeny Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-02-22</date><risdate>2019</risdate><volume>122</volume><issue>7</issue><spage>077203</spage><epage>077203</epage><pages>077203-077203</pages><artnum>077203</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30848649</pmid><doi>10.1103/PhysRevLett.122.077203</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-02, Vol.122 (7), p.077203-077203, Article 077203 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2189543387 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Antiferromagnetism Density functional theory Electrical resistivity Electron spin Electron states First principles Mathematical analysis Spintronics Torque Transport properties |
title | Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirac%20Nodal%20Line%20Metal%20for%20Topological%20Antiferromagnetic%20Spintronics&rft.jtitle=Physical%20review%20letters&rft.au=Shao,%20Ding-Fu&rft.date=2019-02-22&rft.volume=122&rft.issue=7&rft.spage=077203&rft.epage=077203&rft.pages=077203-077203&rft.artnum=077203&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.077203&rft_dat=%3Cproquest_cross%3E2187004410%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187004410&rft_id=info:pmid/30848649&rfr_iscdi=true |