Loading…

Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics

Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipul...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2019-02, Vol.122 (7), p.077203-077203, Article 077203
Main Authors: Shao, Ding-Fu, Gurung, Gautam, Zhang, Shu-Hui, Tsymbal, Evgeny Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143
cites cdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143
container_end_page 077203
container_issue 7
container_start_page 077203
container_title Physical review letters
container_volume 122
creator Shao, Ding-Fu
Gurung, Gautam
Zhang, Shu-Hui
Tsymbal, Evgeny Y
description Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.
doi_str_mv 10.1103/PhysRevLett.122.077203
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2189543387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187004410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_Qlnw4mXrJJMmu8fS-gX1A63nJc0mNWW7qclW6L93S6uIp5mB530ZHkL6FAaUAl6_fGzjq_mamqYZUMYGICUDPCJdCjJPJaX8mHQBkKY5gOyQsxiXAECZyE5JByHjmeB5l0wmLiidPPlSVcnU1SZ5NE27Wh-SmV_7yi-cbu9R3ThrQvArtahN43TytnZ1E3ztdDwnJ1ZV0VwcZo-8397Mxvfp9PnuYTyapnoIokkxR8F5iRKQCWVgjnyuLeaWMWtspoVFJdrPjJiXyIaU59yiVKzUVoGhHHvkat-7Dv5zY2JTrFzUpqpUbfwmFoxm-ZAjZrJFL_-hS78JdfvdjpIAnLcae0TsKR18jMHYYh3cSoVtQaHYeS7-eC5az8XecxvsH-o385Upf2M_YvEbBpx7Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187004410</pqid></control><display><type>article</type><title>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Shao, Ding-Fu ; Gurung, Gautam ; Zhang, Shu-Hui ; Tsymbal, Evgeny Y</creator><creatorcontrib>Shao, Ding-Fu ; Gurung, Gautam ; Zhang, Shu-Hui ; Tsymbal, Evgeny Y</creatorcontrib><description>Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.077203</identifier><identifier>PMID: 30848649</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Antiferromagnetism ; Density functional theory ; Electrical resistivity ; Electron spin ; Electron states ; First principles ; Mathematical analysis ; Spintronics ; Torque ; Transport properties</subject><ispartof>Physical review letters, 2019-02, Vol.122 (7), p.077203-077203, Article 077203</ispartof><rights>Copyright American Physical Society Feb 22, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</citedby><cites>FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30848649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Ding-Fu</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Zhang, Shu-Hui</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y</creatorcontrib><title>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.</description><subject>Antiferromagnetism</subject><subject>Density functional theory</subject><subject>Electrical resistivity</subject><subject>Electron spin</subject><subject>Electron states</subject><subject>First principles</subject><subject>Mathematical analysis</subject><subject>Spintronics</subject><subject>Torque</subject><subject>Transport properties</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_Qlnw4mXrJJMmu8fS-gX1A63nJc0mNWW7qclW6L93S6uIp5mB530ZHkL6FAaUAl6_fGzjq_mamqYZUMYGICUDPCJdCjJPJaX8mHQBkKY5gOyQsxiXAECZyE5JByHjmeB5l0wmLiidPPlSVcnU1SZ5NE27Wh-SmV_7yi-cbu9R3ThrQvArtahN43TytnZ1E3ztdDwnJ1ZV0VwcZo-8397Mxvfp9PnuYTyapnoIokkxR8F5iRKQCWVgjnyuLeaWMWtspoVFJdrPjJiXyIaU59yiVKzUVoGhHHvkat-7Dv5zY2JTrFzUpqpUbfwmFoxm-ZAjZrJFL_-hS78JdfvdjpIAnLcae0TsKR18jMHYYh3cSoVtQaHYeS7-eC5az8XecxvsH-o385Upf2M_YvEbBpx7Cw</recordid><startdate>20190222</startdate><enddate>20190222</enddate><creator>Shao, Ding-Fu</creator><creator>Gurung, Gautam</creator><creator>Zhang, Shu-Hui</creator><creator>Tsymbal, Evgeny Y</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190222</creationdate><title>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</title><author>Shao, Ding-Fu ; Gurung, Gautam ; Zhang, Shu-Hui ; Tsymbal, Evgeny Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Density functional theory</topic><topic>Electrical resistivity</topic><topic>Electron spin</topic><topic>Electron states</topic><topic>First principles</topic><topic>Mathematical analysis</topic><topic>Spintronics</topic><topic>Torque</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Ding-Fu</creatorcontrib><creatorcontrib>Gurung, Gautam</creatorcontrib><creatorcontrib>Zhang, Shu-Hui</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Ding-Fu</au><au>Gurung, Gautam</au><au>Zhang, Shu-Hui</au><au>Tsymbal, Evgeny Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-02-22</date><risdate>2019</risdate><volume>122</volume><issue>7</issue><spage>077203</spage><epage>077203</epage><pages>077203-077203</pages><artnum>077203</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30848649</pmid><doi>10.1103/PhysRevLett.122.077203</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-02, Vol.122 (7), p.077203-077203, Article 077203
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2189543387
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Antiferromagnetism
Density functional theory
Electrical resistivity
Electron spin
Electron states
First principles
Mathematical analysis
Spintronics
Torque
Transport properties
title Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirac%20Nodal%20Line%20Metal%20for%20Topological%20Antiferromagnetic%20Spintronics&rft.jtitle=Physical%20review%20letters&rft.au=Shao,%20Ding-Fu&rft.date=2019-02-22&rft.volume=122&rft.issue=7&rft.spage=077203&rft.epage=077203&rft.pages=077203-077203&rft.artnum=077203&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.077203&rft_dat=%3Cproquest_cross%3E2187004410%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c506t-393644d370326ae0b34bcf39f22fef8c6f3a6084e6bd3251494f37a2dcfa0e143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187004410&rft_id=info:pmid/30848649&rfr_iscdi=true