Loading…

Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data

Isocitrate dehydrogenase 1 (IDH1) mutation status is an independent favorable prognostic factor for glioblastoma (GBM) and is usually determined by sequencing or immunohistochemistry. An accurate prediction of IDH1 mutation status via noninvasive methods helps establish the appropriate treatment str...

Full description

Saved in:
Bibliographic Details
Published in:World neurosurgery 2019-05, Vol.125, p.e688-e696
Main Authors: Lee, Min Ho, Kim, Junhyung, Kim, Sung-Tae, Shin, Hye-Mi, You, Hye-Jin, Choi, Jung Won, Seol, Ho Jun, Nam, Do-Hyun, Lee, Jung-Il, Kong, Doo-Sik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-cc6ad30b0a5b151c8e77311f36efdf05557bb30581307051400c7c2bbc2f5f583
cites cdi_FETCH-LOGICAL-c356t-cc6ad30b0a5b151c8e77311f36efdf05557bb30581307051400c7c2bbc2f5f583
container_end_page e696
container_issue
container_start_page e688
container_title World neurosurgery
container_volume 125
creator Lee, Min Ho
Kim, Junhyung
Kim, Sung-Tae
Shin, Hye-Mi
You, Hye-Jin
Choi, Jung Won
Seol, Ho Jun
Nam, Do-Hyun
Lee, Jung-Il
Kong, Doo-Sik
description Isocitrate dehydrogenase 1 (IDH1) mutation status is an independent favorable prognostic factor for glioblastoma (GBM) and is usually determined by sequencing or immunohistochemistry. An accurate prediction of IDH1 mutation status via noninvasive methods helps establish the appropriate treatment strategy. We aimed to predict IDH1 mutation status using quantitative radiomic data in patients with GBM. Between May 2010 and June 2015, we retrospectively identified 88 patients with newly diagnosed GBM. After semiautomatic segmentation of the lesions, we extracted 31 features from preoperative multiparametric magnetic resonance images. We also determined IDH1 mutation status using targeted sequencing and immunohistochemistry. A training cohort (n = 88) was used to train machine learning−based classifiers, with internal validation. The machine-learning technique was then validated in an external dataset of 35 patients with GBM. We detected the IDH1 mutation in 12 out of 88 GBMs. Multiparametric radiomic profiles revealed that the IDH1 mutation was associated with a smaller enhancing area volume and a larger necrotic area volume. Using the machine learning−based classification algorithms, we identified 70.3%−87.3% of prediction rate of IDH1 mutation status and found 66.3%−83.4% accuracy in the external validation set. We demonstrate that machine learning algorithms can predict IDH1 mutation status in GBM using preoperative multiparametric magnetic resonance images.
doi_str_mv 10.1016/j.wneu.2019.01.157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2189556059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878875019302578</els_id><sourcerecordid>2189556059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-cc6ad30b0a5b151c8e77311f36efdf05557bb30581307051400c7c2bbc2f5f583</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qqCDgD3CofOxl05kYx16plxZaQFrUD-BsOc6keJXY1E5A_fd1upRjfRlr9M6jmYexE4QKAZv32-op0FzVgOsKsEKpXrED1EqvtGrWr1_-EvbZcc5bKE_gqVbiDdsXoITUCg_Y07dEnXeTj4HHnl-dXyK_nif7t3FT6py5D_xi8LEdbJ7iaPld9uEnv7bu3gfiG7IpLI1bcvfB_5qJf7KZOl4A32cbJr_QHon_sJ2Po3f83E72iO31dsh0_FwP2d2Xz7dnl6vN14urs4-blROymVbONbYT0IKVLUp0mpQSiL1oqO96kFKqthUgNZaTQOIpgFOubltX97KXWhyydzvuQ4pltTyZ0WdHw2ADxTmbGvVaygbkukTrXdSlmHOi3jwkP9r02yCYxbnZmsW5WZwbQFOcl6G3z_y5Hal7GflnuAQ-7AJUrnz0lEx2noIr1hO5yXTR_4__BycPkuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189556059</pqid></control><display><type>article</type><title>Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data</title><source>Elsevier</source><creator>Lee, Min Ho ; Kim, Junhyung ; Kim, Sung-Tae ; Shin, Hye-Mi ; You, Hye-Jin ; Choi, Jung Won ; Seol, Ho Jun ; Nam, Do-Hyun ; Lee, Jung-Il ; Kong, Doo-Sik</creator><creatorcontrib>Lee, Min Ho ; Kim, Junhyung ; Kim, Sung-Tae ; Shin, Hye-Mi ; You, Hye-Jin ; Choi, Jung Won ; Seol, Ho Jun ; Nam, Do-Hyun ; Lee, Jung-Il ; Kong, Doo-Sik</creatorcontrib><description>Isocitrate dehydrogenase 1 (IDH1) mutation status is an independent favorable prognostic factor for glioblastoma (GBM) and is usually determined by sequencing or immunohistochemistry. An accurate prediction of IDH1 mutation status via noninvasive methods helps establish the appropriate treatment strategy. We aimed to predict IDH1 mutation status using quantitative radiomic data in patients with GBM. Between May 2010 and June 2015, we retrospectively identified 88 patients with newly diagnosed GBM. After semiautomatic segmentation of the lesions, we extracted 31 features from preoperative multiparametric magnetic resonance images. We also determined IDH1 mutation status using targeted sequencing and immunohistochemistry. A training cohort (n = 88) was used to train machine learning−based classifiers, with internal validation. The machine-learning technique was then validated in an external dataset of 35 patients with GBM. We detected the IDH1 mutation in 12 out of 88 GBMs. Multiparametric radiomic profiles revealed that the IDH1 mutation was associated with a smaller enhancing area volume and a larger necrotic area volume. Using the machine learning−based classification algorithms, we identified 70.3%−87.3% of prediction rate of IDH1 mutation status and found 66.3%−83.4% accuracy in the external validation set. We demonstrate that machine learning algorithms can predict IDH1 mutation status in GBM using preoperative multiparametric magnetic resonance images.</description><identifier>ISSN: 1878-8750</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2019.01.157</identifier><identifier>PMID: 30735871</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Algorithms ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Female ; Glioblastoma ; Glioblastoma - genetics ; Glioblastoma - pathology ; Glioma - genetics ; Glioma - pathology ; Humans ; Isocitrate dehydrogenase ; Isocitrate Dehydrogenase - genetics ; Machine Learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Mutation ; Retrospective Studies</subject><ispartof>World neurosurgery, 2019-05, Vol.125, p.e688-e696</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-cc6ad30b0a5b151c8e77311f36efdf05557bb30581307051400c7c2bbc2f5f583</citedby><cites>FETCH-LOGICAL-c356t-cc6ad30b0a5b151c8e77311f36efdf05557bb30581307051400c7c2bbc2f5f583</cites><orcidid>0000-0002-7519-3594 ; 0000-0001-6174-7579 ; 0000-0001-8143-5513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30735871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Min Ho</creatorcontrib><creatorcontrib>Kim, Junhyung</creatorcontrib><creatorcontrib>Kim, Sung-Tae</creatorcontrib><creatorcontrib>Shin, Hye-Mi</creatorcontrib><creatorcontrib>You, Hye-Jin</creatorcontrib><creatorcontrib>Choi, Jung Won</creatorcontrib><creatorcontrib>Seol, Ho Jun</creatorcontrib><creatorcontrib>Nam, Do-Hyun</creatorcontrib><creatorcontrib>Lee, Jung-Il</creatorcontrib><creatorcontrib>Kong, Doo-Sik</creatorcontrib><title>Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>Isocitrate dehydrogenase 1 (IDH1) mutation status is an independent favorable prognostic factor for glioblastoma (GBM) and is usually determined by sequencing or immunohistochemistry. An accurate prediction of IDH1 mutation status via noninvasive methods helps establish the appropriate treatment strategy. We aimed to predict IDH1 mutation status using quantitative radiomic data in patients with GBM. Between May 2010 and June 2015, we retrospectively identified 88 patients with newly diagnosed GBM. After semiautomatic segmentation of the lesions, we extracted 31 features from preoperative multiparametric magnetic resonance images. We also determined IDH1 mutation status using targeted sequencing and immunohistochemistry. A training cohort (n = 88) was used to train machine learning−based classifiers, with internal validation. The machine-learning technique was then validated in an external dataset of 35 patients with GBM. We detected the IDH1 mutation in 12 out of 88 GBMs. Multiparametric radiomic profiles revealed that the IDH1 mutation was associated with a smaller enhancing area volume and a larger necrotic area volume. Using the machine learning−based classification algorithms, we identified 70.3%−87.3% of prediction rate of IDH1 mutation status and found 66.3%−83.4% accuracy in the external validation set. We demonstrate that machine learning algorithms can predict IDH1 mutation status in GBM using preoperative multiparametric magnetic resonance images.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Female</subject><subject>Glioblastoma</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - pathology</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - genetics</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Retrospective Studies</subject><issn>1878-8750</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq2qqCDgD3CofOxl05kYx16plxZaQFrUD-BsOc6keJXY1E5A_fd1upRjfRlr9M6jmYexE4QKAZv32-op0FzVgOsKsEKpXrED1EqvtGrWr1_-EvbZcc5bKE_gqVbiDdsXoITUCg_Y07dEnXeTj4HHnl-dXyK_nif7t3FT6py5D_xi8LEdbJ7iaPld9uEnv7bu3gfiG7IpLI1bcvfB_5qJf7KZOl4A32cbJr_QHon_sJ2Po3f83E72iO31dsh0_FwP2d2Xz7dnl6vN14urs4-blROymVbONbYT0IKVLUp0mpQSiL1oqO96kFKqthUgNZaTQOIpgFOubltX97KXWhyydzvuQ4pltTyZ0WdHw2ADxTmbGvVaygbkukTrXdSlmHOi3jwkP9r02yCYxbnZmsW5WZwbQFOcl6G3z_y5Hal7GflnuAQ-7AJUrnz0lEx2noIr1hO5yXTR_4__BycPkuQ</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Lee, Min Ho</creator><creator>Kim, Junhyung</creator><creator>Kim, Sung-Tae</creator><creator>Shin, Hye-Mi</creator><creator>You, Hye-Jin</creator><creator>Choi, Jung Won</creator><creator>Seol, Ho Jun</creator><creator>Nam, Do-Hyun</creator><creator>Lee, Jung-Il</creator><creator>Kong, Doo-Sik</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7519-3594</orcidid><orcidid>https://orcid.org/0000-0001-6174-7579</orcidid><orcidid>https://orcid.org/0000-0001-8143-5513</orcidid></search><sort><creationdate>201905</creationdate><title>Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data</title><author>Lee, Min Ho ; Kim, Junhyung ; Kim, Sung-Tae ; Shin, Hye-Mi ; You, Hye-Jin ; Choi, Jung Won ; Seol, Ho Jun ; Nam, Do-Hyun ; Lee, Jung-Il ; Kong, Doo-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-cc6ad30b0a5b151c8e77311f36efdf05557bb30581307051400c7c2bbc2f5f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Female</topic><topic>Glioblastoma</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - pathology</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - genetics</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Min Ho</creatorcontrib><creatorcontrib>Kim, Junhyung</creatorcontrib><creatorcontrib>Kim, Sung-Tae</creatorcontrib><creatorcontrib>Shin, Hye-Mi</creatorcontrib><creatorcontrib>You, Hye-Jin</creatorcontrib><creatorcontrib>Choi, Jung Won</creatorcontrib><creatorcontrib>Seol, Ho Jun</creatorcontrib><creatorcontrib>Nam, Do-Hyun</creatorcontrib><creatorcontrib>Lee, Jung-Il</creatorcontrib><creatorcontrib>Kong, Doo-Sik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Min Ho</au><au>Kim, Junhyung</au><au>Kim, Sung-Tae</au><au>Shin, Hye-Mi</au><au>You, Hye-Jin</au><au>Choi, Jung Won</au><au>Seol, Ho Jun</au><au>Nam, Do-Hyun</au><au>Lee, Jung-Il</au><au>Kong, Doo-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2019-05</date><risdate>2019</risdate><volume>125</volume><spage>e688</spage><epage>e696</epage><pages>e688-e696</pages><issn>1878-8750</issn><eissn>1878-8769</eissn><abstract>Isocitrate dehydrogenase 1 (IDH1) mutation status is an independent favorable prognostic factor for glioblastoma (GBM) and is usually determined by sequencing or immunohistochemistry. An accurate prediction of IDH1 mutation status via noninvasive methods helps establish the appropriate treatment strategy. We aimed to predict IDH1 mutation status using quantitative radiomic data in patients with GBM. Between May 2010 and June 2015, we retrospectively identified 88 patients with newly diagnosed GBM. After semiautomatic segmentation of the lesions, we extracted 31 features from preoperative multiparametric magnetic resonance images. We also determined IDH1 mutation status using targeted sequencing and immunohistochemistry. A training cohort (n = 88) was used to train machine learning−based classifiers, with internal validation. The machine-learning technique was then validated in an external dataset of 35 patients with GBM. We detected the IDH1 mutation in 12 out of 88 GBMs. Multiparametric radiomic profiles revealed that the IDH1 mutation was associated with a smaller enhancing area volume and a larger necrotic area volume. Using the machine learning−based classification algorithms, we identified 70.3%−87.3% of prediction rate of IDH1 mutation status and found 66.3%−83.4% accuracy in the external validation set. We demonstrate that machine learning algorithms can predict IDH1 mutation status in GBM using preoperative multiparametric magnetic resonance images.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30735871</pmid><doi>10.1016/j.wneu.2019.01.157</doi><orcidid>https://orcid.org/0000-0002-7519-3594</orcidid><orcidid>https://orcid.org/0000-0001-6174-7579</orcidid><orcidid>https://orcid.org/0000-0001-8143-5513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1878-8750
ispartof World neurosurgery, 2019-05, Vol.125, p.e688-e696
issn 1878-8750
1878-8769
language eng
recordid cdi_proquest_miscellaneous_2189556059
source Elsevier
subjects Adult
Aged
Aged, 80 and over
Algorithms
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Female
Glioblastoma
Glioblastoma - genetics
Glioblastoma - pathology
Glioma - genetics
Glioma - pathology
Humans
Isocitrate dehydrogenase
Isocitrate Dehydrogenase - genetics
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Middle Aged
Mutation
Retrospective Studies
title Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20IDH1%20Mutation%20Status%20in%20Glioblastoma%20Using%20Machine%20Learning%20Technique%20Based%20on%20Quantitative%20Radiomic%20Data&rft.jtitle=World%20neurosurgery&rft.au=Lee,%20Min%20Ho&rft.date=2019-05&rft.volume=125&rft.spage=e688&rft.epage=e696&rft.pages=e688-e696&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2019.01.157&rft_dat=%3Cproquest_cross%3E2189556059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-cc6ad30b0a5b151c8e77311f36efdf05557bb30581307051400c7c2bbc2f5f583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189556059&rft_id=info:pmid/30735871&rfr_iscdi=true