Loading…
Hofmann Metal–Organic Framework Monolayer Nanosheets as an Axial Coordination Platform for Biosensing
Two-dimensional (2D) nanomaterials are remarkably attractive platform candidates for signal transduction through fluorescence resonance energy transfer or photo-induced electron-transfer pathway. In this work, a 2D Hofmann metal organic framework (hMOF) monolayer nanosheet was developed as an axial...
Saved in:
Published in: | ACS applied materials & interfaces 2019-04, Vol.11 (13), p.12986-12992 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional (2D) nanomaterials are remarkably attractive platform candidates for signal transduction through fluorescence resonance energy transfer or photo-induced electron-transfer pathway. In this work, a 2D Hofmann metal organic framework (hMOF) monolayer nanosheet was developed as an axial coordination platform for DNA detection via a ligand-to-metal charge-transfer quenching mechanism. Through modulating the position of phosphonate groups of rigid ligands, a layer-structured hMOF was synthesized. The single crystals showed that the adjacent layers were linked via hydrogen bonds between diethyl 4-pyridylphosphonate and the solvent. Furthermore, the 2D hMOF monolayer nanosheets were obtained easily via a top–down method. More significantly, the quenching mechanism was identified as an axial coordination between the open Fe2+ sites of hMOF nanosheets and fluorophores with 91% quenching efficiency, constituting an excellent signal transduction strategy. The smart use of hMOF monolayer nanosheets as an axial coordination platform could lead to promising applications in signal switching or/and sensing devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b00693 |