Loading…

Postural stability during gait for adults with hereditary spastic paraparesis

Individuals with hereditary spastic paraparesis (HSP) are often impaired in their ability to control posture as a result of the neurological and musculoskeletal implications of their condition. This research aimed to assess postural stability during gait in a group of adults with HSP. Ten individual...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2019-05, Vol.88, p.12-17
Main Authors: van Vugt, Yolanda, Stinear, James, Claire Davies, T., Zhang, Yanxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Individuals with hereditary spastic paraparesis (HSP) are often impaired in their ability to control posture as a result of the neurological and musculoskeletal implications of their condition. This research aimed to assess postural stability during gait in a group of adults with HSP. Ten individuals with HSP and 10 healthy controls underwent computerized gait analysis while walking barefoot along a 10-m track. Two biomechanics methods were used to assess stability: the center of pressure and center of mass separation (COP-COM) method, and the extrapolated center of mass (XCOM) method. Spatiotemporal and kinematic variables were also investigated. The XCOM method identified deficits in mediolateral stability for the HSP group at both heel strike and mid-stance. The group with HSP also had slower walking velocity, lower cadence, more time spent in double stance, larger step widths, and greater lateral trunk flexion than the control group. These results suggest that individuals with HSP adjust characteristics of their gait to minimize the instability arising from their impairments but have residual deficits in mediolateral stability. This may result in an increased risk of falls, particularly in the sideways direction.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2019.03.001