Loading…
Met-enkephalin inhibits ROS production through Wnt/β-catenin signaling in the ZF4 cells of zebrafish
Opioid neuropeptides are developed early in the course of a long evolutionary process. As the endogenous messengers of immune system, opioid neuropeptides participate in regulating immune response. In this study, the mechanism that Met-enkephalin (M-ENK) inhibits ROS production through Wnt/β-catenin...
Saved in:
Published in: | Fish & shellfish immunology 2019-05, Vol.88, p.432-440 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Opioid neuropeptides are developed early in the course of a long evolutionary process. As the endogenous messengers of immune system, opioid neuropeptides participate in regulating immune response. In this study, the mechanism that Met-enkephalin (M-ENK) inhibits ROS production through Wnt/β-catenin signaling was investigated in the ZF4 cells of zebrafish. ZF4 cells were exposed to 0, 10, 20, 40, 80, and 160 μM Met-enkephalin (M-ENK) for 24 h, and the cell viability was detected with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The cell viability was significantly increased by 10, 20, 40, 80, and 160 μM M-ENK. After ZF4 cells were exposed to 0, 20, 40, and 80 μM M-ENK for 24 h, the mRNA expression of Wnt10b, β-catenin, and CCAAT/enhancer binding protein α (C/EBPα) was significantly increased by 40 and 80 μM M-ENK. However, the mRNA and protein expression of GSK-3β was significantly decreased by 40 and 80 μM M-ENK. The protein expression of β-catenin was significantly induced by 40 and 80 μM M-ENK, while the protein expression of p-β-catenin was significantly decreased by 20, 40, and 80 μM M-ENK. In addition, the mRNA expression of CAT, SOD, and GSH-PX was significantly increased by 40 and 80 μM M-ENK. The levels of H2O2, ·OH, and O2·- were significantly decreased, but the activity of CAT, SOD, and GSH-PX was significantly increased by 40 and 80 μM M-ENK. The fluorescence intensity of reactive oxygen species (ROS) was decreased, and that of mitochondrial membrane potential (MMP) was increased with the increase of M-ENK concentration in ZF4 cells. The results showed that M-ENK could induce Wnt/β-catenin signaling, which further inhibited ROS production through the induction of C/EBPα, MMP, and the activities of antioxidant enzymes.
•M-ENK inhibits the levels of ROS in the ZF4 cells of zebrafish.•M-ENK induces the mRNA expression and activities of CAT, SOD, and GSH-PX.•M-ENK induces Wnt/β-catenin signaling in the ZF4 cells of zebrafish.•M-ENK inhibits the levels of ROS through Wnt/β-catenin signaling pathway. |
---|---|
ISSN: | 1050-4648 1095-9947 |
DOI: | 10.1016/j.fsi.2019.03.016 |