Loading…

Near-infrared modulation by means of GeTe/SOI-based metamaterial

Today, nanophotonics still lacks components for modulation that can be easily implementable in existing silicon-on-insulator (SOI) technology. Chalcogenide phase change materials (PCMs) are promising candidates for tuning in the near infrared: at the nanoscale, thin layers can provide enough contras...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2019-03, Vol.44 (6), p.1508-1511
Main Authors: Petronijevic, E, Leahu, G, Di Meo, V, Crescitelli, A, Dardano, P, Coppola, G, Esposito, E, Rendina, I, Miritello, M, Grimaldi, M G, Torrisi, V, Compagnini, G, Sibilia, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Today, nanophotonics still lacks components for modulation that can be easily implementable in existing silicon-on-insulator (SOI) technology. Chalcogenide phase change materials (PCMs) are promising candidates for tuning in the near infrared: at the nanoscale, thin layers can provide enough contrast to control the optical response of a nanostructure. Moreover, all-dielectric metamaterials allow for resonant behavior without having ohmic losses in the telecom range. Here, a novel hybridization of a SOI-based metamaterial with PCM GeTe is experimentally investigated. A metamaterial based on Si nanorods, covered by a thin layer of GeTe, is designed and fabricated. Switching GeTe from amorphous to crystalline leads to a rather high resonance-governed reflection contrast at 1.55 μm. Additional confocal Raman imaging is done to differentiate the crystallized zones of the metamaterials' unit cell. The findings are in good agreement with numerical analysis and show good perspectives of all-dielectric tunable near-infrared nanophotonics.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.44.001508