Loading…
Direct Non‐Oxidative Methane Conversion in a Millisecond Catalytic Wall Reactor
Direct non‐oxidative methane conversion (DNMC) has been recognized as a single‐step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challen...
Saved in:
Published in: | Angewandte Chemie International Edition 2019-05, Vol.58 (21), p.7083-7086 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4760-d83f30848f37be0394aa27ea90139ce7867ca4e431559d16c2470841fe6d7c6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4760-d83f30848f37be0394aa27ea90139ce7867ca4e431559d16c2470841fe6d7c6c3 |
container_end_page | 7086 |
container_issue | 21 |
container_start_page | 7083 |
container_title | Angewandte Chemie International Edition |
container_volume | 58 |
creator | Oh, Su Cheun Schulman, Emily Zhang, Junyan Fan, Jiufeng Pan, Ying Meng, Jianqiang Liu, Dongxia |
description | Direct non‐oxidative methane conversion (DNMC) has been recognized as a single‐step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challenges. We show that a millisecond catalytic wall reactor enables stable methane conversion, C2+ selectivity, coke yield, and long‐term durability. These effects originate from initiation of the DNMC on a reactor wall and maintenance of the reaction by gas‐phase chemistry within the reactor compartment. The results obtained under various temperatures and gas flow rates form a basis for optimizing the process towards lighter C2 or heavier aromatic products. A process simulation was done by Aspen Plus to understand the practical implications of this reactor in DNMC. High carbon and thermal efficiencies and low cost of the reactor materials are realized, indicating the technoeconomic viability of this DNMC technology.
Wall to wall: The upgrade of CH4 by direct non‐oxidative methane conversion is facilitated by a Fe/SiO2 millisecond catalytic wall reactor. The reactor design results in stable methane conversion, C2+ selectivity, coke yield, and long‐term durability. |
doi_str_mv | 10.1002/anie.201903000 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194145926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194145926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4760-d83f30848f37be0394aa27ea90139ce7867ca4e431559d16c2470841fe6d7c6c3</originalsourceid><addsrcrecordid>eNqF0LtKBDEYBeAgipfV1lICNjaz5jbJTCnrFbygKJYhZv7BSHaiyay6nY_gM_okRnZVsLFKiu8_HA5Cm5QMKSFs13QOhozQmnBCyAJapSWjBVeKL-a_4LxQVUlX0FpKD9lXFZHLaIWTqlKy5Kvoct9FsD0-D93H2_vFq2tM754Bn0F_bzrAo9A9Q0wudNh12OAz571LYEPX4JHpjZ_2zuJb4z2-AmP7ENfRUmt8go35O0A3hwfXo-Pi9OLoZLR3WlihJCmaire5hqharu6A8FoYwxSYmlBeW1CVVNYIEJyWZd1QaZlQmdMWZKOstHyAdma5jzE8TSD1euySBe9z7TBJmtFaUFHWTGa6_Yc-hEnscjvNGONKcFmSrIYzZWNIKUKrH6MbmzjVlOivsfXX2Ppn7HywNY-d3I2h-eHf62ZQz8CL8zD9J07vnZ8c_IZ_Amjvik8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223743650</pqid></control><display><type>article</type><title>Direct Non‐Oxidative Methane Conversion in a Millisecond Catalytic Wall Reactor</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Oh, Su Cheun ; Schulman, Emily ; Zhang, Junyan ; Fan, Jiufeng ; Pan, Ying ; Meng, Jianqiang ; Liu, Dongxia</creator><creatorcontrib>Oh, Su Cheun ; Schulman, Emily ; Zhang, Junyan ; Fan, Jiufeng ; Pan, Ying ; Meng, Jianqiang ; Liu, Dongxia</creatorcontrib><description>Direct non‐oxidative methane conversion (DNMC) has been recognized as a single‐step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challenges. We show that a millisecond catalytic wall reactor enables stable methane conversion, C2+ selectivity, coke yield, and long‐term durability. These effects originate from initiation of the DNMC on a reactor wall and maintenance of the reaction by gas‐phase chemistry within the reactor compartment. The results obtained under various temperatures and gas flow rates form a basis for optimizing the process towards lighter C2 or heavier aromatic products. A process simulation was done by Aspen Plus to understand the practical implications of this reactor in DNMC. High carbon and thermal efficiencies and low cost of the reactor materials are realized, indicating the technoeconomic viability of this DNMC technology.
Wall to wall: The upgrade of CH4 by direct non‐oxidative methane conversion is facilitated by a Fe/SiO2 millisecond catalytic wall reactor. The reactor design results in stable methane conversion, C2+ selectivity, coke yield, and long‐term durability.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201903000</identifier><identifier>PMID: 30887653</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkenes ; Catalytic converters ; Coke ; Conversion ; Durability ; Endothermic reactions ; Flow velocity ; Gas flow ; heterogeneous catalysis ; iron ; Methane ; methane conversion ; natural gas ; Organic chemistry ; Reactor materials ; Reactors ; Selectivity ; supported catalysts ; Technology ; Viability</subject><ispartof>Angewandte Chemie International Edition, 2019-05, Vol.58 (21), p.7083-7086</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4760-d83f30848f37be0394aa27ea90139ce7867ca4e431559d16c2470841fe6d7c6c3</citedby><cites>FETCH-LOGICAL-c4760-d83f30848f37be0394aa27ea90139ce7867ca4e431559d16c2470841fe6d7c6c3</cites><orcidid>0000-0001-8712-2219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30887653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Su Cheun</creatorcontrib><creatorcontrib>Schulman, Emily</creatorcontrib><creatorcontrib>Zhang, Junyan</creatorcontrib><creatorcontrib>Fan, Jiufeng</creatorcontrib><creatorcontrib>Pan, Ying</creatorcontrib><creatorcontrib>Meng, Jianqiang</creatorcontrib><creatorcontrib>Liu, Dongxia</creatorcontrib><title>Direct Non‐Oxidative Methane Conversion in a Millisecond Catalytic Wall Reactor</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Direct non‐oxidative methane conversion (DNMC) has been recognized as a single‐step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challenges. We show that a millisecond catalytic wall reactor enables stable methane conversion, C2+ selectivity, coke yield, and long‐term durability. These effects originate from initiation of the DNMC on a reactor wall and maintenance of the reaction by gas‐phase chemistry within the reactor compartment. The results obtained under various temperatures and gas flow rates form a basis for optimizing the process towards lighter C2 or heavier aromatic products. A process simulation was done by Aspen Plus to understand the practical implications of this reactor in DNMC. High carbon and thermal efficiencies and low cost of the reactor materials are realized, indicating the technoeconomic viability of this DNMC technology.
Wall to wall: The upgrade of CH4 by direct non‐oxidative methane conversion is facilitated by a Fe/SiO2 millisecond catalytic wall reactor. The reactor design results in stable methane conversion, C2+ selectivity, coke yield, and long‐term durability.</description><subject>Alkenes</subject><subject>Catalytic converters</subject><subject>Coke</subject><subject>Conversion</subject><subject>Durability</subject><subject>Endothermic reactions</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>heterogeneous catalysis</subject><subject>iron</subject><subject>Methane</subject><subject>methane conversion</subject><subject>natural gas</subject><subject>Organic chemistry</subject><subject>Reactor materials</subject><subject>Reactors</subject><subject>Selectivity</subject><subject>supported catalysts</subject><subject>Technology</subject><subject>Viability</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0LtKBDEYBeAgipfV1lICNjaz5jbJTCnrFbygKJYhZv7BSHaiyay6nY_gM_okRnZVsLFKiu8_HA5Cm5QMKSFs13QOhozQmnBCyAJapSWjBVeKL-a_4LxQVUlX0FpKD9lXFZHLaIWTqlKy5Kvoct9FsD0-D93H2_vFq2tM754Bn0F_bzrAo9A9Q0wudNh12OAz571LYEPX4JHpjZ_2zuJb4z2-AmP7ENfRUmt8go35O0A3hwfXo-Pi9OLoZLR3WlihJCmaire5hqharu6A8FoYwxSYmlBeW1CVVNYIEJyWZd1QaZlQmdMWZKOstHyAdma5jzE8TSD1euySBe9z7TBJmtFaUFHWTGa6_Yc-hEnscjvNGONKcFmSrIYzZWNIKUKrH6MbmzjVlOivsfXX2Ppn7HywNY-d3I2h-eHf62ZQz8CL8zD9J07vnZ8c_IZ_Amjvik8</recordid><startdate>20190520</startdate><enddate>20190520</enddate><creator>Oh, Su Cheun</creator><creator>Schulman, Emily</creator><creator>Zhang, Junyan</creator><creator>Fan, Jiufeng</creator><creator>Pan, Ying</creator><creator>Meng, Jianqiang</creator><creator>Liu, Dongxia</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8712-2219</orcidid></search><sort><creationdate>20190520</creationdate><title>Direct Non‐Oxidative Methane Conversion in a Millisecond Catalytic Wall Reactor</title><author>Oh, Su Cheun ; Schulman, Emily ; Zhang, Junyan ; Fan, Jiufeng ; Pan, Ying ; Meng, Jianqiang ; Liu, Dongxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4760-d83f30848f37be0394aa27ea90139ce7867ca4e431559d16c2470841fe6d7c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkenes</topic><topic>Catalytic converters</topic><topic>Coke</topic><topic>Conversion</topic><topic>Durability</topic><topic>Endothermic reactions</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>heterogeneous catalysis</topic><topic>iron</topic><topic>Methane</topic><topic>methane conversion</topic><topic>natural gas</topic><topic>Organic chemistry</topic><topic>Reactor materials</topic><topic>Reactors</topic><topic>Selectivity</topic><topic>supported catalysts</topic><topic>Technology</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Su Cheun</creatorcontrib><creatorcontrib>Schulman, Emily</creatorcontrib><creatorcontrib>Zhang, Junyan</creatorcontrib><creatorcontrib>Fan, Jiufeng</creatorcontrib><creatorcontrib>Pan, Ying</creatorcontrib><creatorcontrib>Meng, Jianqiang</creatorcontrib><creatorcontrib>Liu, Dongxia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Su Cheun</au><au>Schulman, Emily</au><au>Zhang, Junyan</au><au>Fan, Jiufeng</au><au>Pan, Ying</au><au>Meng, Jianqiang</au><au>Liu, Dongxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Non‐Oxidative Methane Conversion in a Millisecond Catalytic Wall Reactor</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-05-20</date><risdate>2019</risdate><volume>58</volume><issue>21</issue><spage>7083</spage><epage>7086</epage><pages>7083-7086</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Direct non‐oxidative methane conversion (DNMC) has been recognized as a single‐step technology that directly converts methane into olefins and higher hydrocarbons. High reaction temperature and low catalyst durability, resulting from the endothermic reaction and coke deposition, are two main challenges. We show that a millisecond catalytic wall reactor enables stable methane conversion, C2+ selectivity, coke yield, and long‐term durability. These effects originate from initiation of the DNMC on a reactor wall and maintenance of the reaction by gas‐phase chemistry within the reactor compartment. The results obtained under various temperatures and gas flow rates form a basis for optimizing the process towards lighter C2 or heavier aromatic products. A process simulation was done by Aspen Plus to understand the practical implications of this reactor in DNMC. High carbon and thermal efficiencies and low cost of the reactor materials are realized, indicating the technoeconomic viability of this DNMC technology.
Wall to wall: The upgrade of CH4 by direct non‐oxidative methane conversion is facilitated by a Fe/SiO2 millisecond catalytic wall reactor. The reactor design results in stable methane conversion, C2+ selectivity, coke yield, and long‐term durability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30887653</pmid><doi>10.1002/anie.201903000</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8712-2219</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2019-05, Vol.58 (21), p.7083-7086 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2194145926 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alkenes Catalytic converters Coke Conversion Durability Endothermic reactions Flow velocity Gas flow heterogeneous catalysis iron Methane methane conversion natural gas Organic chemistry Reactor materials Reactors Selectivity supported catalysts Technology Viability |
title | Direct Non‐Oxidative Methane Conversion in a Millisecond Catalytic Wall Reactor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Non%E2%80%90Oxidative%20Methane%20Conversion%20in%20a%20Millisecond%20Catalytic%20Wall%20Reactor&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Oh,%20Su%20Cheun&rft.date=2019-05-20&rft.volume=58&rft.issue=21&rft.spage=7083&rft.epage=7086&rft.pages=7083-7086&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201903000&rft_dat=%3Cproquest_cross%3E2194145926%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4760-d83f30848f37be0394aa27ea90139ce7867ca4e431559d16c2470841fe6d7c6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2223743650&rft_id=info:pmid/30887653&rfr_iscdi=true |