Loading…

Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS

In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimid...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2019-05, Vol.91 (9), p.5591-5598
Main Authors: Zhu, Peihua, Wang, Yucheng, Ma, Pan, Li, Shanshan, Fan, Fuqing, Cui, Kang, Ge, Shenguang, Zhang, Yan, Yu, Jinghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43
cites cdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43
container_end_page 5598
container_issue 9
container_start_page 5591
container_title Analytical chemistry (Washington)
container_volume 91
creator Zhu, Peihua
Wang, Yucheng
Ma, Pan
Li, Shanshan
Fan, Fuqing
Cui, Kang
Ge, Shenguang
Zhang, Yan
Yu, Jinghua
description In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.
doi_str_mv 10.1021/acs.analchem.8b04497
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194585665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230821303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</originalsourceid><addsrcrecordid>eNp9kcFO3DAURa2qVZlC_6BClth0k-HZcRJnCVPKVBoEErCO7PiF8SixwU6EZscv9Bf7JTWagUUXXVmyzr2W7yHkG4M5A85OVRvnyqm-XeMwlxqEqKsPZMYKDlkpJf9IZgCQZ7wCOCBfYtwAMAas_EwOcpA1ByZnZLvyz9mNf8ZAlTN0aR_W2Q2GzodBuRbpXbADjuttrwbrkF6qSG_RRR_ouYpoqHfU_Xn57egSRwx-M7l2tOnyyrbBa-zHSH1HU-O2x5T_Ye1gDZ4uzO0R-dSpPuLX_XlI7n9e3C2W2er68tfibJUpUdVjxkBqyXOEoi41z0ullZAgco2KdV0redfVBivBUStTiEKzlhtRQ4KMqVDkh-T7rvcx-KcJ49gMNrbY98qhn2LDWS0KWZRlkdCTf9CNn0LaOFE8bcZZDnmixI5KP4wxYNc8ppFU2DYMmlc1TVLTvKlp9mpS7HhfPukBzXvozUUCYAe8xt8f_m_nXzqOnvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230821303</pqid></control><display><type>article</type><title>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhu, Peihua ; Wang, Yucheng ; Ma, Pan ; Li, Shanshan ; Fan, Fuqing ; Cui, Kang ; Ge, Shenguang ; Zhang, Yan ; Yu, Jinghua</creator><creatorcontrib>Zhu, Peihua ; Wang, Yucheng ; Ma, Pan ; Li, Shanshan ; Fan, Fuqing ; Cui, Kang ; Ge, Shenguang ; Zhang, Yan ; Yu, Jinghua</creatorcontrib><description>In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b04497</identifier><identifier>PMID: 30892018</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Diimide ; Food quality ; Gas sensors ; Heterojunctions ; Operating temperature ; Quality control ; Reproducibility ; Selectivity ; Sensors ; Trimethylamine</subject><ispartof>Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5591-5598</ispartof><rights>Copyright American Chemical Society May 7, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</citedby><cites>FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</cites><orcidid>0000-0002-4947-4448 ; 0000-0001-5043-0322 ; 0000-0002-1936-4619 ; 0000-0002-0537-6491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30892018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Peihua</creatorcontrib><creatorcontrib>Wang, Yucheng</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Fan, Fuqing</creatorcontrib><creatorcontrib>Cui, Kang</creatorcontrib><creatorcontrib>Ge, Shenguang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yu, Jinghua</creatorcontrib><title>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Diimide</subject><subject>Food quality</subject><subject>Gas sensors</subject><subject>Heterojunctions</subject><subject>Operating temperature</subject><subject>Quality control</subject><subject>Reproducibility</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Trimethylamine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kcFO3DAURa2qVZlC_6BClth0k-HZcRJnCVPKVBoEErCO7PiF8SixwU6EZscv9Bf7JTWagUUXXVmyzr2W7yHkG4M5A85OVRvnyqm-XeMwlxqEqKsPZMYKDlkpJf9IZgCQZ7wCOCBfYtwAMAas_EwOcpA1ByZnZLvyz9mNf8ZAlTN0aR_W2Q2GzodBuRbpXbADjuttrwbrkF6qSG_RRR_ouYpoqHfU_Xn57egSRwx-M7l2tOnyyrbBa-zHSH1HU-O2x5T_Ye1gDZ4uzO0R-dSpPuLX_XlI7n9e3C2W2er68tfibJUpUdVjxkBqyXOEoi41z0ullZAgco2KdV0redfVBivBUStTiEKzlhtRQ4KMqVDkh-T7rvcx-KcJ49gMNrbY98qhn2LDWS0KWZRlkdCTf9CNn0LaOFE8bcZZDnmixI5KP4wxYNc8ppFU2DYMmlc1TVLTvKlp9mpS7HhfPukBzXvozUUCYAe8xt8f_m_nXzqOnvs</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Zhu, Peihua</creator><creator>Wang, Yucheng</creator><creator>Ma, Pan</creator><creator>Li, Shanshan</creator><creator>Fan, Fuqing</creator><creator>Cui, Kang</creator><creator>Ge, Shenguang</creator><creator>Zhang, Yan</creator><creator>Yu, Jinghua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4947-4448</orcidid><orcidid>https://orcid.org/0000-0001-5043-0322</orcidid><orcidid>https://orcid.org/0000-0002-1936-4619</orcidid><orcidid>https://orcid.org/0000-0002-0537-6491</orcidid></search><sort><creationdate>20190507</creationdate><title>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</title><author>Zhu, Peihua ; Wang, Yucheng ; Ma, Pan ; Li, Shanshan ; Fan, Fuqing ; Cui, Kang ; Ge, Shenguang ; Zhang, Yan ; Yu, Jinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Diimide</topic><topic>Food quality</topic><topic>Gas sensors</topic><topic>Heterojunctions</topic><topic>Operating temperature</topic><topic>Quality control</topic><topic>Reproducibility</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Trimethylamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Peihua</creatorcontrib><creatorcontrib>Wang, Yucheng</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Fan, Fuqing</creatorcontrib><creatorcontrib>Cui, Kang</creatorcontrib><creatorcontrib>Ge, Shenguang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yu, Jinghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Peihua</au><au>Wang, Yucheng</au><au>Ma, Pan</au><au>Li, Shanshan</au><au>Fan, Fuqing</au><au>Cui, Kang</au><au>Ge, Shenguang</au><au>Zhang, Yan</au><au>Yu, Jinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>91</volume><issue>9</issue><spage>5591</spage><epage>5598</epage><pages>5591-5598</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30892018</pmid><doi>10.1021/acs.analchem.8b04497</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4947-4448</orcidid><orcidid>https://orcid.org/0000-0001-5043-0322</orcidid><orcidid>https://orcid.org/0000-0002-1936-4619</orcidid><orcidid>https://orcid.org/0000-0002-0537-6491</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5591-5598
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2194585665
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Chemistry
Diimide
Food quality
Gas sensors
Heterojunctions
Operating temperature
Quality control
Reproducibility
Selectivity
Sensors
Trimethylamine
title Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Power%20and%20High-Performance%20Trimethylamine%20Gas%20Sensor%20Based%20on%20n%E2%80%91n%20Heterojunction%20Microbelts%20of%20Perylene%20Diimide/CdS&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhu,%20Peihua&rft.date=2019-05-07&rft.volume=91&rft.issue=9&rft.spage=5591&rft.epage=5598&rft.pages=5591-5598&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b04497&rft_dat=%3Cproquest_cross%3E2230821303%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2230821303&rft_id=info:pmid/30892018&rfr_iscdi=true