Loading…
Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS
In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimid...
Saved in:
Published in: | Analytical chemistry (Washington) 2019-05, Vol.91 (9), p.5591-5598 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43 |
---|---|
cites | cdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43 |
container_end_page | 5598 |
container_issue | 9 |
container_start_page | 5591 |
container_title | Analytical chemistry (Washington) |
container_volume | 91 |
creator | Zhu, Peihua Wang, Yucheng Ma, Pan Li, Shanshan Fan, Fuqing Cui, Kang Ge, Shenguang Zhang, Yan Yu, Jinghua |
description | In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor. |
doi_str_mv | 10.1021/acs.analchem.8b04497 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2194585665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230821303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</originalsourceid><addsrcrecordid>eNp9kcFO3DAURa2qVZlC_6BClth0k-HZcRJnCVPKVBoEErCO7PiF8SixwU6EZscv9Bf7JTWagUUXXVmyzr2W7yHkG4M5A85OVRvnyqm-XeMwlxqEqKsPZMYKDlkpJf9IZgCQZ7wCOCBfYtwAMAas_EwOcpA1ByZnZLvyz9mNf8ZAlTN0aR_W2Q2GzodBuRbpXbADjuttrwbrkF6qSG_RRR_ouYpoqHfU_Xn57egSRwx-M7l2tOnyyrbBa-zHSH1HU-O2x5T_Ye1gDZ4uzO0R-dSpPuLX_XlI7n9e3C2W2er68tfibJUpUdVjxkBqyXOEoi41z0ullZAgco2KdV0redfVBivBUStTiEKzlhtRQ4KMqVDkh-T7rvcx-KcJ49gMNrbY98qhn2LDWS0KWZRlkdCTf9CNn0LaOFE8bcZZDnmixI5KP4wxYNc8ppFU2DYMmlc1TVLTvKlp9mpS7HhfPukBzXvozUUCYAe8xt8f_m_nXzqOnvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230821303</pqid></control><display><type>article</type><title>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhu, Peihua ; Wang, Yucheng ; Ma, Pan ; Li, Shanshan ; Fan, Fuqing ; Cui, Kang ; Ge, Shenguang ; Zhang, Yan ; Yu, Jinghua</creator><creatorcontrib>Zhu, Peihua ; Wang, Yucheng ; Ma, Pan ; Li, Shanshan ; Fan, Fuqing ; Cui, Kang ; Ge, Shenguang ; Zhang, Yan ; Yu, Jinghua</creatorcontrib><description>In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b04497</identifier><identifier>PMID: 30892018</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Diimide ; Food quality ; Gas sensors ; Heterojunctions ; Operating temperature ; Quality control ; Reproducibility ; Selectivity ; Sensors ; Trimethylamine</subject><ispartof>Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5591-5598</ispartof><rights>Copyright American Chemical Society May 7, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</citedby><cites>FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</cites><orcidid>0000-0002-4947-4448 ; 0000-0001-5043-0322 ; 0000-0002-1936-4619 ; 0000-0002-0537-6491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30892018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Peihua</creatorcontrib><creatorcontrib>Wang, Yucheng</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Fan, Fuqing</creatorcontrib><creatorcontrib>Cui, Kang</creatorcontrib><creatorcontrib>Ge, Shenguang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yu, Jinghua</creatorcontrib><title>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Diimide</subject><subject>Food quality</subject><subject>Gas sensors</subject><subject>Heterojunctions</subject><subject>Operating temperature</subject><subject>Quality control</subject><subject>Reproducibility</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Trimethylamine</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kcFO3DAURa2qVZlC_6BClth0k-HZcRJnCVPKVBoEErCO7PiF8SixwU6EZscv9Bf7JTWagUUXXVmyzr2W7yHkG4M5A85OVRvnyqm-XeMwlxqEqKsPZMYKDlkpJf9IZgCQZ7wCOCBfYtwAMAas_EwOcpA1ByZnZLvyz9mNf8ZAlTN0aR_W2Q2GzodBuRbpXbADjuttrwbrkF6qSG_RRR_ouYpoqHfU_Xn57egSRwx-M7l2tOnyyrbBa-zHSH1HU-O2x5T_Ye1gDZ4uzO0R-dSpPuLX_XlI7n9e3C2W2er68tfibJUpUdVjxkBqyXOEoi41z0ullZAgco2KdV0redfVBivBUStTiEKzlhtRQ4KMqVDkh-T7rvcx-KcJ49gMNrbY98qhn2LDWS0KWZRlkdCTf9CNn0LaOFE8bcZZDnmixI5KP4wxYNc8ppFU2DYMmlc1TVLTvKlp9mpS7HhfPukBzXvozUUCYAe8xt8f_m_nXzqOnvs</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Zhu, Peihua</creator><creator>Wang, Yucheng</creator><creator>Ma, Pan</creator><creator>Li, Shanshan</creator><creator>Fan, Fuqing</creator><creator>Cui, Kang</creator><creator>Ge, Shenguang</creator><creator>Zhang, Yan</creator><creator>Yu, Jinghua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4947-4448</orcidid><orcidid>https://orcid.org/0000-0001-5043-0322</orcidid><orcidid>https://orcid.org/0000-0002-1936-4619</orcidid><orcidid>https://orcid.org/0000-0002-0537-6491</orcidid></search><sort><creationdate>20190507</creationdate><title>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</title><author>Zhu, Peihua ; Wang, Yucheng ; Ma, Pan ; Li, Shanshan ; Fan, Fuqing ; Cui, Kang ; Ge, Shenguang ; Zhang, Yan ; Yu, Jinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Diimide</topic><topic>Food quality</topic><topic>Gas sensors</topic><topic>Heterojunctions</topic><topic>Operating temperature</topic><topic>Quality control</topic><topic>Reproducibility</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Trimethylamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Peihua</creatorcontrib><creatorcontrib>Wang, Yucheng</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Fan, Fuqing</creatorcontrib><creatorcontrib>Cui, Kang</creatorcontrib><creatorcontrib>Ge, Shenguang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Yu, Jinghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Peihua</au><au>Wang, Yucheng</au><au>Ma, Pan</au><au>Li, Shanshan</au><au>Fan, Fuqing</au><au>Cui, Kang</au><au>Ge, Shenguang</au><au>Zhang, Yan</au><au>Yu, Jinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>91</volume><issue>9</issue><spage>5591</spage><epage>5598</epage><pages>5591-5598</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>In this work, low-power and high-performance gas sensors toward trimethylamine (TMA) are presented for the food quality control in the Internet of Things. An amphiphilic perylene diimide derivative (1,6,7,12-tetra-chlorinated perylene-N-(2-hydroxyethyl)-N′-hexylamine-3,4,9,10-tetracarboxylic bisimide, TC-PDI) is synthesized and further employed to construct the organic microrods of TC-PDI and organic/inorganic microbelts of TC-PDI/CdS by a phase transfer method. Due to the formation of n-n heterojunctions, the TC-PDI/CdS microbelts exhibit higher conductivity than the TC-PDI microrods alone, which present an efficient gas sensing platform for TMA determination at room operating temperature with high reproducibility and selectivity. Remarkably, the limit of detection, stability, and selectivity of the TC-PDI/CdS gas sensor are significantly improved, which ascribes to the efficient charge separation of n-n heterojunctions. More importantly, the fabricated gas sensor provides potential application of “on-site” and “on-line” TMA identification in real systems and suggests an efficient way to develop new hybrid n-n heterojunctions for a low-power and high-performance gas sensor.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30892018</pmid><doi>10.1021/acs.analchem.8b04497</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4947-4448</orcidid><orcidid>https://orcid.org/0000-0001-5043-0322</orcidid><orcidid>https://orcid.org/0000-0002-1936-4619</orcidid><orcidid>https://orcid.org/0000-0002-0537-6491</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5591-5598 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2194585665 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Chemistry Diimide Food quality Gas sensors Heterojunctions Operating temperature Quality control Reproducibility Selectivity Sensors Trimethylamine |
title | Low-Power and High-Performance Trimethylamine Gas Sensor Based on n‑n Heterojunction Microbelts of Perylene Diimide/CdS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Power%20and%20High-Performance%20Trimethylamine%20Gas%20Sensor%20Based%20on%20n%E2%80%91n%20Heterojunction%20Microbelts%20of%20Perylene%20Diimide/CdS&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhu,%20Peihua&rft.date=2019-05-07&rft.volume=91&rft.issue=9&rft.spage=5591&rft.epage=5598&rft.pages=5591-5598&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b04497&rft_dat=%3Cproquest_cross%3E2230821303%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-108b823e0596b236aba48043bea1ffc82ff9de742ebad545b1c2d490480dd7e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2230821303&rft_id=info:pmid/30892018&rfr_iscdi=true |