Loading…
Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing
A series of photosensitive resins suitable for the production of silicone elastomers through digital light processing 3D printing are reported. Based on thiol–ene click reaction between a branched mercaptan-functionalized polysiloxane and different-molecular-weight vinyl-terminated poly(dimethylsil...
Saved in:
Published in: | ACS applied materials & interfaces 2019-04, Vol.11 (15), p.14391-14398 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of photosensitive resins suitable for the production of silicone elastomers through digital light processing 3D printing are reported. Based on thiol–ene click reaction between a branched mercaptan-functionalized polysiloxane and different-molecular-weight vinyl-terminated poly(dimethylsiloxane), silicone elastomers with tunable hardness and mechanical properties are obtained. Printed elastomeric objects show high printing resolution and excellent mechanical properties. The break elongation of the silicone elastomers can get up to 1400%, which is much higher than the reported UV-cured elastomers and is even higher than the most stretchable thermocuring silicone elastomers. The superstretchable silicone elastomers are then applied to fabricate stretchable electronics with carbon nanotubes-doped hydrogel. The printable and processable silicone elastomers have great potential applications in various fields, including soft robotics, flexible actuators, and medical implants. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b03156 |