Loading…
Error mitigation extends the computational reach of a noisy quantum processor
Quantum computation, a paradigm of computing that is completely different from classical methods, benefits from theoretically proved speed-ups for certain problems and can be used to study the properties of quantum systems 1 . Yet, because of the inherently fragile nature of the physical computing e...
Saved in:
Published in: | Nature (London) 2019-03, Vol.567 (7749), p.491-495 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c677t-9e8e1373fed47751fc464737ad7eb6513e9d5d80064fbcc52588ca92dfe3f7503 |
---|---|
cites | cdi_FETCH-LOGICAL-c677t-9e8e1373fed47751fc464737ad7eb6513e9d5d80064fbcc52588ca92dfe3f7503 |
container_end_page | 495 |
container_issue | 7749 |
container_start_page | 491 |
container_title | Nature (London) |
container_volume | 567 |
creator | Kandala, Abhinav Temme, Kristan Córcoles, Antonio D. Mezzacapo, Antonio Chow, Jerry M. Gambetta, Jay M. |
description | Quantum computation, a paradigm of computing that is completely different from classical methods, benefits from theoretically proved speed-ups for certain problems and can be used to study the properties of quantum systems
1
. Yet, because of the inherently fragile nature of the physical computing elements (qubits), achieving quantum advantages over classical computation requires extremely low error rates for qubit operations, as well as substantial physical qubits, to realize fault tolerance via quantum error correction
2
,
3
. However, recent theoretical work
4
,
5
has shown that the accuracy of computation (based on expectation values of quantum observables) can be enhanced through an extrapolation of results from a collection of experiments of varying noise. Here we demonstrate this error mitigation protocol on a superconducting quantum processor, enhancing its computational capability, with no additional hardware modifications. We apply the protocol to mitigate errors in canonical single- and two-qubit experiments and then extend its application to the variational optimization
6
–
8
of Hamiltonians for quantum chemistry and magnetism
9
. We effectively demonstrate that the suppression of incoherent errors helps to achieve an otherwise inaccessible level of accuracy in the variational solutions using our noisy processor. These results demonstrate that error mitigation techniques will enable substantial improvements in the capabilities of near-term quantum computing hardware.
The accuracy of computations on noisy, near-term quantum systems can be enhanced by extrapolating results from experiments with various noise levels, without requiring additional hardware modifications. |
doi_str_mv | 10.1038/s41586-019-1040-7 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2199190860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580380480</galeid><sourcerecordid>A580380480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c677t-9e8e1373fed47751fc464737ad7eb6513e9d5d80064fbcc52588ca92dfe3f7503</originalsourceid><addsrcrecordid>eNp10mFr1DAYB_AgijunH8A3UvSNIp1PmrRJXx7HpoOpoBNfhlz6pOtom7skBfftl3rTeXKjLwrp7_mHJn9CXlI4ocDkh8BpKascaJ1T4JCLR2RBuahyXknxmCwACpmDZNUReRbCNQCUVPCn5IhBTSUTsCCfT713Phu62LU6dm7M8FfEsQlZvMLMuGEzxd_rus88anOVOZvpbHRduMm2kx7jNGQb7wyG4Pxz8sTqPuCLu_cx-XF2ern6lF98_Xi-Wl7kphIi5jVKpEwwiw0XoqTW8IoLJnQjcF2VlGHdlI0EqLhdG1MWpZRG10VjkVlRAjsmb3e5aefthCGqoQsG-16P6KagClrXtAZZzfTNf_TaTT79TlIF8IoykPW9anWPqhuti16bOVQtS5nOGrics_IDqsURve7diLZLy3v-9QFvNt1W_YtODqD0NDh05mDqu72BZGK6tFZPIajz79_27fuH7fLy5-rLvqY7bbwLwaNVG98N2t8oCmpunNo1TqXGqblxSqSZV3fnO60HbP5O_KlYAsUOhPRpbNHfX8DDqbfW09s1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204613089</pqid></control><display><type>article</type><title>Error mitigation extends the computational reach of a noisy quantum processor</title><source>Nature</source><creator>Kandala, Abhinav ; Temme, Kristan ; Córcoles, Antonio D. ; Mezzacapo, Antonio ; Chow, Jerry M. ; Gambetta, Jay M.</creator><creatorcontrib>Kandala, Abhinav ; Temme, Kristan ; Córcoles, Antonio D. ; Mezzacapo, Antonio ; Chow, Jerry M. ; Gambetta, Jay M.</creatorcontrib><description>Quantum computation, a paradigm of computing that is completely different from classical methods, benefits from theoretically proved speed-ups for certain problems and can be used to study the properties of quantum systems
1
. Yet, because of the inherently fragile nature of the physical computing elements (qubits), achieving quantum advantages over classical computation requires extremely low error rates for qubit operations, as well as substantial physical qubits, to realize fault tolerance via quantum error correction
2
,
3
. However, recent theoretical work
4
,
5
has shown that the accuracy of computation (based on expectation values of quantum observables) can be enhanced through an extrapolation of results from a collection of experiments of varying noise. Here we demonstrate this error mitigation protocol on a superconducting quantum processor, enhancing its computational capability, with no additional hardware modifications. We apply the protocol to mitigate errors in canonical single- and two-qubit experiments and then extend its application to the variational optimization
6
–
8
of Hamiltonians for quantum chemistry and magnetism
9
. We effectively demonstrate that the suppression of incoherent errors helps to achieve an otherwise inaccessible level of accuracy in the variational solutions using our noisy processor. These results demonstrate that error mitigation techniques will enable substantial improvements in the capabilities of near-term quantum computing hardware.
The accuracy of computations on noisy, near-term quantum systems can be enhanced by extrapolating results from experiments with various noise levels, without requiring additional hardware modifications.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1040-7</identifier><identifier>PMID: 30918370</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 142/126 ; 639/766/483/2802 ; 639/766/483/3926 ; 639/766/483/481 ; Accuracy ; Circuits ; Computation ; Computer applications ; Error correction ; Error correction & detection ; Error-correcting codes ; Experiments ; Fault tolerance ; Hardware ; Humanities and Social Sciences ; Innovations ; Letter ; Magnetism ; Methods ; Microprocessors ; multidisciplinary ; Noise ; Optimization ; Organic chemistry ; Quantum chemistry ; Quantum computing ; Quantum theory ; Qubits (quantum computing) ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2019-03, Vol.567 (7749), p.491-495</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 28, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c677t-9e8e1373fed47751fc464737ad7eb6513e9d5d80064fbcc52588ca92dfe3f7503</citedby><cites>FETCH-LOGICAL-c677t-9e8e1373fed47751fc464737ad7eb6513e9d5d80064fbcc52588ca92dfe3f7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30918370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kandala, Abhinav</creatorcontrib><creatorcontrib>Temme, Kristan</creatorcontrib><creatorcontrib>Córcoles, Antonio D.</creatorcontrib><creatorcontrib>Mezzacapo, Antonio</creatorcontrib><creatorcontrib>Chow, Jerry M.</creatorcontrib><creatorcontrib>Gambetta, Jay M.</creatorcontrib><title>Error mitigation extends the computational reach of a noisy quantum processor</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Quantum computation, a paradigm of computing that is completely different from classical methods, benefits from theoretically proved speed-ups for certain problems and can be used to study the properties of quantum systems
1
. Yet, because of the inherently fragile nature of the physical computing elements (qubits), achieving quantum advantages over classical computation requires extremely low error rates for qubit operations, as well as substantial physical qubits, to realize fault tolerance via quantum error correction
2
,
3
. However, recent theoretical work
4
,
5
has shown that the accuracy of computation (based on expectation values of quantum observables) can be enhanced through an extrapolation of results from a collection of experiments of varying noise. Here we demonstrate this error mitigation protocol on a superconducting quantum processor, enhancing its computational capability, with no additional hardware modifications. We apply the protocol to mitigate errors in canonical single- and two-qubit experiments and then extend its application to the variational optimization
6
–
8
of Hamiltonians for quantum chemistry and magnetism
9
. We effectively demonstrate that the suppression of incoherent errors helps to achieve an otherwise inaccessible level of accuracy in the variational solutions using our noisy processor. These results demonstrate that error mitigation techniques will enable substantial improvements in the capabilities of near-term quantum computing hardware.
The accuracy of computations on noisy, near-term quantum systems can be enhanced by extrapolating results from experiments with various noise levels, without requiring additional hardware modifications.</description><subject>119/118</subject><subject>142/126</subject><subject>639/766/483/2802</subject><subject>639/766/483/3926</subject><subject>639/766/483/481</subject><subject>Accuracy</subject><subject>Circuits</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Error-correcting codes</subject><subject>Experiments</subject><subject>Fault tolerance</subject><subject>Hardware</subject><subject>Humanities and Social Sciences</subject><subject>Innovations</subject><subject>Letter</subject><subject>Magnetism</subject><subject>Methods</subject><subject>Microprocessors</subject><subject>multidisciplinary</subject><subject>Noise</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Quantum chemistry</subject><subject>Quantum computing</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10mFr1DAYB_AgijunH8A3UvSNIp1PmrRJXx7HpoOpoBNfhlz6pOtom7skBfftl3rTeXKjLwrp7_mHJn9CXlI4ocDkh8BpKascaJ1T4JCLR2RBuahyXknxmCwACpmDZNUReRbCNQCUVPCn5IhBTSUTsCCfT713Phu62LU6dm7M8FfEsQlZvMLMuGEzxd_rus88anOVOZvpbHRduMm2kx7jNGQb7wyG4Pxz8sTqPuCLu_cx-XF2ern6lF98_Xi-Wl7kphIi5jVKpEwwiw0XoqTW8IoLJnQjcF2VlGHdlI0EqLhdG1MWpZRG10VjkVlRAjsmb3e5aefthCGqoQsG-16P6KagClrXtAZZzfTNf_TaTT79TlIF8IoykPW9anWPqhuti16bOVQtS5nOGrics_IDqsURve7diLZLy3v-9QFvNt1W_YtODqD0NDh05mDqu72BZGK6tFZPIajz79_27fuH7fLy5-rLvqY7bbwLwaNVG98N2t8oCmpunNo1TqXGqblxSqSZV3fnO60HbP5O_KlYAsUOhPRpbNHfX8DDqbfW09s1</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Kandala, Abhinav</creator><creator>Temme, Kristan</creator><creator>Córcoles, Antonio D.</creator><creator>Mezzacapo, Antonio</creator><creator>Chow, Jerry M.</creator><creator>Gambetta, Jay M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201903</creationdate><title>Error mitigation extends the computational reach of a noisy quantum processor</title><author>Kandala, Abhinav ; Temme, Kristan ; Córcoles, Antonio D. ; Mezzacapo, Antonio ; Chow, Jerry M. ; Gambetta, Jay M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c677t-9e8e1373fed47751fc464737ad7eb6513e9d5d80064fbcc52588ca92dfe3f7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>142/126</topic><topic>639/766/483/2802</topic><topic>639/766/483/3926</topic><topic>639/766/483/481</topic><topic>Accuracy</topic><topic>Circuits</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Error-correcting codes</topic><topic>Experiments</topic><topic>Fault tolerance</topic><topic>Hardware</topic><topic>Humanities and Social Sciences</topic><topic>Innovations</topic><topic>Letter</topic><topic>Magnetism</topic><topic>Methods</topic><topic>Microprocessors</topic><topic>multidisciplinary</topic><topic>Noise</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Quantum chemistry</topic><topic>Quantum computing</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandala, Abhinav</creatorcontrib><creatorcontrib>Temme, Kristan</creatorcontrib><creatorcontrib>Córcoles, Antonio D.</creatorcontrib><creatorcontrib>Mezzacapo, Antonio</creatorcontrib><creatorcontrib>Chow, Jerry M.</creatorcontrib><creatorcontrib>Gambetta, Jay M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandala, Abhinav</au><au>Temme, Kristan</au><au>Córcoles, Antonio D.</au><au>Mezzacapo, Antonio</au><au>Chow, Jerry M.</au><au>Gambetta, Jay M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error mitigation extends the computational reach of a noisy quantum processor</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-03</date><risdate>2019</risdate><volume>567</volume><issue>7749</issue><spage>491</spage><epage>495</epage><pages>491-495</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Quantum computation, a paradigm of computing that is completely different from classical methods, benefits from theoretically proved speed-ups for certain problems and can be used to study the properties of quantum systems
1
. Yet, because of the inherently fragile nature of the physical computing elements (qubits), achieving quantum advantages over classical computation requires extremely low error rates for qubit operations, as well as substantial physical qubits, to realize fault tolerance via quantum error correction
2
,
3
. However, recent theoretical work
4
,
5
has shown that the accuracy of computation (based on expectation values of quantum observables) can be enhanced through an extrapolation of results from a collection of experiments of varying noise. Here we demonstrate this error mitigation protocol on a superconducting quantum processor, enhancing its computational capability, with no additional hardware modifications. We apply the protocol to mitigate errors in canonical single- and two-qubit experiments and then extend its application to the variational optimization
6
–
8
of Hamiltonians for quantum chemistry and magnetism
9
. We effectively demonstrate that the suppression of incoherent errors helps to achieve an otherwise inaccessible level of accuracy in the variational solutions using our noisy processor. These results demonstrate that error mitigation techniques will enable substantial improvements in the capabilities of near-term quantum computing hardware.
The accuracy of computations on noisy, near-term quantum systems can be enhanced by extrapolating results from experiments with various noise levels, without requiring additional hardware modifications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30918370</pmid><doi>10.1038/s41586-019-1040-7</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-03, Vol.567 (7749), p.491-495 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2199190860 |
source | Nature |
subjects | 119/118 142/126 639/766/483/2802 639/766/483/3926 639/766/483/481 Accuracy Circuits Computation Computer applications Error correction Error correction & detection Error-correcting codes Experiments Fault tolerance Hardware Humanities and Social Sciences Innovations Letter Magnetism Methods Microprocessors multidisciplinary Noise Optimization Organic chemistry Quantum chemistry Quantum computing Quantum theory Qubits (quantum computing) Science Science (multidisciplinary) |
title | Error mitigation extends the computational reach of a noisy quantum processor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20mitigation%20extends%20the%20computational%20reach%20of%20a%20noisy%20quantum%20processor&rft.jtitle=Nature%20(London)&rft.au=Kandala,%20Abhinav&rft.date=2019-03&rft.volume=567&rft.issue=7749&rft.spage=491&rft.epage=495&rft.pages=491-495&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1040-7&rft_dat=%3Cgale_proqu%3EA580380480%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c677t-9e8e1373fed47751fc464737ad7eb6513e9d5d80064fbcc52588ca92dfe3f7503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2204613089&rft_id=info:pmid/30918370&rft_galeid=A580380480&rfr_iscdi=true |