Loading…
Direct Measurement of Hyperfine Shifts and Radio Frequency Manipulation of Nuclear Spins in Individual CdTe/ZnTe Quantum Dots
We achieve direct detection of electron hyperfine shifts in individual CdTe/ZnTe quantum dots. For the previously inaccessible regime of strong magnetic fields B_{z}≳0.1 T, we demonstrate robust polarization of a few-hundred-particle nuclear spin bath, with an optical initialization time of ∼1 ms...
Saved in:
Published in: | Physical review letters 2019-03, Vol.122 (9), p.096801-096801, Article 096801 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We achieve direct detection of electron hyperfine shifts in individual CdTe/ZnTe quantum dots. For the previously inaccessible regime of strong magnetic fields B_{z}≳0.1 T, we demonstrate robust polarization of a few-hundred-particle nuclear spin bath, with an optical initialization time of ∼1 ms and polarization lifetime exceeding ∼1 s. Nuclear magnetic resonance spectroscopy of individual dots reveals strong electron-nuclear interactions characterized by Knight fields |B_{e}|≳50 mT, an order of magnitude stronger than in III-V semiconductor quantum dots. Our studies confirm II-VI semiconductor quantum dots as a promising platform for hybrid electron-nuclear spin qubit registers, combining the excellent optical properties comparable to III-V dots and the dilute nuclear spin environment similar to group-IV semiconductors. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.096801 |