Loading…
3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose
Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithiu...
Saved in:
Published in: | Advanced materials (Weinheim) 2019-04, Vol.31 (14), p.e1807313-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3 |
container_end_page | n/a |
container_issue | 14 |
container_start_page | e1807313 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Cao, Daxian Xing, Yingjie Tantratian, Karnpiwat Wang, Xiao Ma, Yi Mukhopadhyay, Alolika Cheng, Zheng Zhang, Qing Jiao, Yucong Chen, Lei Zhu, Hongli |
description | Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles.
High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%. |
doi_str_mv | 10.1002/adma.201807313 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202195842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201709010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</originalsourceid><addsrcrecordid>eNqFkMtO4zAUhi00CMply3IUaTZsUs6xY6deVoUZkFpAAtaRnZxQV7l07ESoOx5hnnGehFTlIs1mVmfz_Z_-8zN2hjBGAH5hitqMOeAEUoFij41QcowT0PIbG4EWMtYqmRyyoxBWAKAVqAN2KCBVqDAZsQdxGd1713RURNfuefn39c89-bL1tWlyiuauW7q-jhbUmSpauNy31nQdeUchumqMrYac3US3pmlzqqq-agOdsP3SVIFO3-8xe_p59Ti7jud3v25m03mcS-QiTnJbEKiCk8hJlUWSG4AJcqtJc8XzQlICqAQaWVpOVqJNSWpdpCZRlBpxzM533rVvf_cUuqx2YdvCNNT2IeMcOGo5SfiA_vgHXbW9b4Z2WwpT0IAwUOMdNbwZgqcyW3tXG7_JELLt3Nl27uxz7iHw_V3b25qKT_xj3wHQO-DFVbT5jy6bXi6mX_I3vT2MGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201709010</pqid></control><display><type>article</type><title>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cao, Daxian ; Xing, Yingjie ; Tantratian, Karnpiwat ; Wang, Xiao ; Ma, Yi ; Mukhopadhyay, Alolika ; Cheng, Zheng ; Zhang, Qing ; Jiao, Yucong ; Chen, Lei ; Zhu, Hongli</creator><creatorcontrib>Cao, Daxian ; Xing, Yingjie ; Tantratian, Karnpiwat ; Wang, Xiao ; Ma, Yi ; Mukhopadhyay, Alolika ; Cheng, Zheng ; Zhang, Qing ; Jiao, Yucong ; Chen, Lei ; Zhu, Hongli</creatorcontrib><description>Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles.
High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201807313</identifier><identifier>PMID: 30761614</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 3D printing ; Anodes ; Biopolymers ; cellulose nanofibers ; dendrite ; Dendritic structure ; Density functional theory ; electrical conductivity ; Lithium ; Lithium batteries ; lithium metal batteries ; Local current ; Materials science ; Microbatteries ; Miniaturization ; Nanofibers ; Prototyping ; Scaffolds ; Shear thinning (liquids) ; Three dimensional printing ; viscosifier</subject><ispartof>Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807313-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</citedby><cites>FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30761614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Daxian</creatorcontrib><creatorcontrib>Xing, Yingjie</creatorcontrib><creatorcontrib>Tantratian, Karnpiwat</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><creatorcontrib>Mukhopadhyay, Alolika</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Jiao, Yucong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhu, Hongli</creatorcontrib><title>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles.
High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Anodes</subject><subject>Biopolymers</subject><subject>cellulose nanofibers</subject><subject>dendrite</subject><subject>Dendritic structure</subject><subject>Density functional theory</subject><subject>electrical conductivity</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal batteries</subject><subject>Local current</subject><subject>Materials science</subject><subject>Microbatteries</subject><subject>Miniaturization</subject><subject>Nanofibers</subject><subject>Prototyping</subject><subject>Scaffolds</subject><subject>Shear thinning (liquids)</subject><subject>Three dimensional printing</subject><subject>viscosifier</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtO4zAUhi00CMply3IUaTZsUs6xY6deVoUZkFpAAtaRnZxQV7l07ESoOx5hnnGehFTlIs1mVmfz_Z_-8zN2hjBGAH5hitqMOeAEUoFij41QcowT0PIbG4EWMtYqmRyyoxBWAKAVqAN2KCBVqDAZsQdxGd1713RURNfuefn39c89-bL1tWlyiuauW7q-jhbUmSpauNy31nQdeUchumqMrYac3US3pmlzqqq-agOdsP3SVIFO3-8xe_p59Ti7jud3v25m03mcS-QiTnJbEKiCk8hJlUWSG4AJcqtJc8XzQlICqAQaWVpOVqJNSWpdpCZRlBpxzM533rVvf_cUuqx2YdvCNNT2IeMcOGo5SfiA_vgHXbW9b4Z2WwpT0IAwUOMdNbwZgqcyW3tXG7_JELLt3Nl27uxz7iHw_V3b25qKT_xj3wHQO-DFVbT5jy6bXi6mX_I3vT2MGg</recordid><startdate>20190405</startdate><enddate>20190405</enddate><creator>Cao, Daxian</creator><creator>Xing, Yingjie</creator><creator>Tantratian, Karnpiwat</creator><creator>Wang, Xiao</creator><creator>Ma, Yi</creator><creator>Mukhopadhyay, Alolika</creator><creator>Cheng, Zheng</creator><creator>Zhang, Qing</creator><creator>Jiao, Yucong</creator><creator>Chen, Lei</creator><creator>Zhu, Hongli</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20190405</creationdate><title>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</title><author>Cao, Daxian ; Xing, Yingjie ; Tantratian, Karnpiwat ; Wang, Xiao ; Ma, Yi ; Mukhopadhyay, Alolika ; Cheng, Zheng ; Zhang, Qing ; Jiao, Yucong ; Chen, Lei ; Zhu, Hongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Anodes</topic><topic>Biopolymers</topic><topic>cellulose nanofibers</topic><topic>dendrite</topic><topic>Dendritic structure</topic><topic>Density functional theory</topic><topic>electrical conductivity</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal batteries</topic><topic>Local current</topic><topic>Materials science</topic><topic>Microbatteries</topic><topic>Miniaturization</topic><topic>Nanofibers</topic><topic>Prototyping</topic><topic>Scaffolds</topic><topic>Shear thinning (liquids)</topic><topic>Three dimensional printing</topic><topic>viscosifier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Daxian</creatorcontrib><creatorcontrib>Xing, Yingjie</creatorcontrib><creatorcontrib>Tantratian, Karnpiwat</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><creatorcontrib>Mukhopadhyay, Alolika</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Jiao, Yucong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhu, Hongli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Daxian</au><au>Xing, Yingjie</au><au>Tantratian, Karnpiwat</au><au>Wang, Xiao</au><au>Ma, Yi</au><au>Mukhopadhyay, Alolika</au><au>Cheng, Zheng</au><au>Zhang, Qing</au><au>Jiao, Yucong</au><au>Chen, Lei</au><au>Zhu, Hongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-04-05</date><risdate>2019</risdate><volume>31</volume><issue>14</issue><spage>e1807313</spage><epage>n/a</epage><pages>e1807313-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles.
High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30761614</pmid><doi>10.1002/adma.201807313</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807313-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2202195842 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3-D printers 3D printing Anodes Biopolymers cellulose nanofibers dendrite Dendritic structure Density functional theory electrical conductivity Lithium Lithium batteries lithium metal batteries Local current Materials science Microbatteries Miniaturization Nanofibers Prototyping Scaffolds Shear thinning (liquids) Three dimensional printing viscosifier |
title | 3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20High%E2%80%90Performance%20Lithium%20Metal%20Microbatteries%20Enabled%20by%20Nanocellulose&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cao,%20Daxian&rft.date=2019-04-05&rft.volume=31&rft.issue=14&rft.spage=e1807313&rft.epage=n/a&rft.pages=e1807313-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201807313&rft_dat=%3Cproquest_cross%3E2201709010%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2201709010&rft_id=info:pmid/30761614&rfr_iscdi=true |