Loading…

3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose

Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithiu...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-04, Vol.31 (14), p.e1807313-n/a
Main Authors: Cao, Daxian, Xing, Yingjie, Tantratian, Karnpiwat, Wang, Xiao, Ma, Yi, Mukhopadhyay, Alolika, Cheng, Zheng, Zhang, Qing, Jiao, Yucong, Chen, Lei, Zhu, Hongli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3
cites cdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3
container_end_page n/a
container_issue 14
container_start_page e1807313
container_title Advanced materials (Weinheim)
container_volume 31
creator Cao, Daxian
Xing, Yingjie
Tantratian, Karnpiwat
Wang, Xiao
Ma, Yi
Mukhopadhyay, Alolika
Cheng, Zheng
Zhang, Qing
Jiao, Yucong
Chen, Lei
Zhu, Hongli
description Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles. High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%.
doi_str_mv 10.1002/adma.201807313
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202195842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201709010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</originalsourceid><addsrcrecordid>eNqFkMtO4zAUhi00CMply3IUaTZsUs6xY6deVoUZkFpAAtaRnZxQV7l07ESoOx5hnnGehFTlIs1mVmfz_Z_-8zN2hjBGAH5hitqMOeAEUoFij41QcowT0PIbG4EWMtYqmRyyoxBWAKAVqAN2KCBVqDAZsQdxGd1713RURNfuefn39c89-bL1tWlyiuauW7q-jhbUmSpauNy31nQdeUchumqMrYac3US3pmlzqqq-agOdsP3SVIFO3-8xe_p59Ti7jud3v25m03mcS-QiTnJbEKiCk8hJlUWSG4AJcqtJc8XzQlICqAQaWVpOVqJNSWpdpCZRlBpxzM533rVvf_cUuqx2YdvCNNT2IeMcOGo5SfiA_vgHXbW9b4Z2WwpT0IAwUOMdNbwZgqcyW3tXG7_JELLt3Nl27uxz7iHw_V3b25qKT_xj3wHQO-DFVbT5jy6bXi6mX_I3vT2MGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201709010</pqid></control><display><type>article</type><title>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cao, Daxian ; Xing, Yingjie ; Tantratian, Karnpiwat ; Wang, Xiao ; Ma, Yi ; Mukhopadhyay, Alolika ; Cheng, Zheng ; Zhang, Qing ; Jiao, Yucong ; Chen, Lei ; Zhu, Hongli</creator><creatorcontrib>Cao, Daxian ; Xing, Yingjie ; Tantratian, Karnpiwat ; Wang, Xiao ; Ma, Yi ; Mukhopadhyay, Alolika ; Cheng, Zheng ; Zhang, Qing ; Jiao, Yucong ; Chen, Lei ; Zhu, Hongli</creatorcontrib><description>Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles. High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201807313</identifier><identifier>PMID: 30761614</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3-D printers ; 3D printing ; Anodes ; Biopolymers ; cellulose nanofibers ; dendrite ; Dendritic structure ; Density functional theory ; electrical conductivity ; Lithium ; Lithium batteries ; lithium metal batteries ; Local current ; Materials science ; Microbatteries ; Miniaturization ; Nanofibers ; Prototyping ; Scaffolds ; Shear thinning (liquids) ; Three dimensional printing ; viscosifier</subject><ispartof>Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807313-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</citedby><cites>FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30761614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Daxian</creatorcontrib><creatorcontrib>Xing, Yingjie</creatorcontrib><creatorcontrib>Tantratian, Karnpiwat</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><creatorcontrib>Mukhopadhyay, Alolika</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Jiao, Yucong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhu, Hongli</creatorcontrib><title>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles. High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Anodes</subject><subject>Biopolymers</subject><subject>cellulose nanofibers</subject><subject>dendrite</subject><subject>Dendritic structure</subject><subject>Density functional theory</subject><subject>electrical conductivity</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal batteries</subject><subject>Local current</subject><subject>Materials science</subject><subject>Microbatteries</subject><subject>Miniaturization</subject><subject>Nanofibers</subject><subject>Prototyping</subject><subject>Scaffolds</subject><subject>Shear thinning (liquids)</subject><subject>Three dimensional printing</subject><subject>viscosifier</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtO4zAUhi00CMply3IUaTZsUs6xY6deVoUZkFpAAtaRnZxQV7l07ESoOx5hnnGehFTlIs1mVmfz_Z_-8zN2hjBGAH5hitqMOeAEUoFij41QcowT0PIbG4EWMtYqmRyyoxBWAKAVqAN2KCBVqDAZsQdxGd1713RURNfuefn39c89-bL1tWlyiuauW7q-jhbUmSpauNy31nQdeUchumqMrYac3US3pmlzqqq-agOdsP3SVIFO3-8xe_p59Ti7jud3v25m03mcS-QiTnJbEKiCk8hJlUWSG4AJcqtJc8XzQlICqAQaWVpOVqJNSWpdpCZRlBpxzM533rVvf_cUuqx2YdvCNNT2IeMcOGo5SfiA_vgHXbW9b4Z2WwpT0IAwUOMdNbwZgqcyW3tXG7_JELLt3Nl27uxz7iHw_V3b25qKT_xj3wHQO-DFVbT5jy6bXi6mX_I3vT2MGg</recordid><startdate>20190405</startdate><enddate>20190405</enddate><creator>Cao, Daxian</creator><creator>Xing, Yingjie</creator><creator>Tantratian, Karnpiwat</creator><creator>Wang, Xiao</creator><creator>Ma, Yi</creator><creator>Mukhopadhyay, Alolika</creator><creator>Cheng, Zheng</creator><creator>Zhang, Qing</creator><creator>Jiao, Yucong</creator><creator>Chen, Lei</creator><creator>Zhu, Hongli</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20190405</creationdate><title>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</title><author>Cao, Daxian ; Xing, Yingjie ; Tantratian, Karnpiwat ; Wang, Xiao ; Ma, Yi ; Mukhopadhyay, Alolika ; Cheng, Zheng ; Zhang, Qing ; Jiao, Yucong ; Chen, Lei ; Zhu, Hongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Anodes</topic><topic>Biopolymers</topic><topic>cellulose nanofibers</topic><topic>dendrite</topic><topic>Dendritic structure</topic><topic>Density functional theory</topic><topic>electrical conductivity</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal batteries</topic><topic>Local current</topic><topic>Materials science</topic><topic>Microbatteries</topic><topic>Miniaturization</topic><topic>Nanofibers</topic><topic>Prototyping</topic><topic>Scaffolds</topic><topic>Shear thinning (liquids)</topic><topic>Three dimensional printing</topic><topic>viscosifier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Daxian</creatorcontrib><creatorcontrib>Xing, Yingjie</creatorcontrib><creatorcontrib>Tantratian, Karnpiwat</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><creatorcontrib>Mukhopadhyay, Alolika</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Jiao, Yucong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Zhu, Hongli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Daxian</au><au>Xing, Yingjie</au><au>Tantratian, Karnpiwat</au><au>Wang, Xiao</au><au>Ma, Yi</au><au>Mukhopadhyay, Alolika</au><au>Cheng, Zheng</au><au>Zhang, Qing</au><au>Jiao, Yucong</au><au>Chen, Lei</au><au>Zhu, Hongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-04-05</date><risdate>2019</risdate><volume>31</volume><issue>14</issue><spage>e1807313</spage><epage>n/a</epage><pages>e1807313-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g−1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles. High‐aspect ratio lithium metal batteries are enabled through a 3D printing technique using nanocellulose from trees as ink surfactant, viscosifier, and conductive scaffold. The full cell achieves a high reversible capacity of 80 mAh g–1 at 10 C and remains stable for over 3000 cycles with high capacity retention of 85%.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30761614</pmid><doi>10.1002/adma.201807313</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-04, Vol.31 (14), p.e1807313-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2202195842
source Wiley-Blackwell Read & Publish Collection
subjects 3-D printers
3D printing
Anodes
Biopolymers
cellulose nanofibers
dendrite
Dendritic structure
Density functional theory
electrical conductivity
Lithium
Lithium batteries
lithium metal batteries
Local current
Materials science
Microbatteries
Miniaturization
Nanofibers
Prototyping
Scaffolds
Shear thinning (liquids)
Three dimensional printing
viscosifier
title 3D Printed High‐Performance Lithium Metal Microbatteries Enabled by Nanocellulose
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20High%E2%80%90Performance%20Lithium%20Metal%20Microbatteries%20Enabled%20by%20Nanocellulose&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Cao,%20Daxian&rft.date=2019-04-05&rft.volume=31&rft.issue=14&rft.spage=e1807313&rft.epage=n/a&rft.pages=e1807313-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201807313&rft_dat=%3Cproquest_cross%3E2201709010%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5123-4cbde06d2e3ce6fd4ca00812b9e9262cd5e401631a5fb2eb51b7e599d7a46e7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2201709010&rft_id=info:pmid/30761614&rfr_iscdi=true