Loading…

A New Perspective on the Effect of UV‑B on l‑Ascorbic Acid Metabolism in Cucumber Seedlings

This study aimed to examine the effects of UV-B on AsA and gene expression in cucumber seedlings. Particular emphasis was placed on identifying genes that were responsive to UV-B to increase AsA levels and elucidate the key UV-B response pathway. We found that the activities of myo-inositol oxygenas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2019-04, Vol.67 (16), p.4444-4452
Main Authors: Liu, Peng, Li, Qiang, Gao, Yinan, Wang, Heng, Chai, Lin, Yu, Hongjun, Jiang, Weijie
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to examine the effects of UV-B on AsA and gene expression in cucumber seedlings. Particular emphasis was placed on identifying genes that were responsive to UV-B to increase AsA levels and elucidate the key UV-B response pathway. We found that the activities of myo-inositol oxygenase (MIOX), galactono-1,4-lactone dehydrogenase (GLDH), ascorbate oxidase (AO), ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and the transcript levels of CsMIOX1, CsGLDH, CsAO2, CsAO4, CsGR1, CsAPX5, and CsDHAR1 significantly increased with UV-B exposure. These observations indicate that UV-B induces the expression of genes involved in d-mannose/l-galactose and myo-inositol pathways and the ascorbate–glutathione system. Moreover, several genes related to the low and high UV-B fluence responses were considered. CsHY5 and CsMYB60 were involved with the low-fluence response and appeared to be responsive from 2 to 28 h. Together, these data show that these genes respond to UV-B to increase AsA levels through the low-fluence UV-B response pathway.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.9b00327