Loading…

Ultrathin Ta2O5 electron-selective contacts for high efficiency InP solar cells

Heterojunction solar cells with transition-metal–oxide-based carrier-selective contacts have been gaining considerable research interest owing to their amenability to low-cost fabrication methods and elimination of parasitic absorption and complex semiconductor doping process. In this work, we propo...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2019-04, Vol.11 (15), p.7497-7505
Main Authors: Parvathala Reddy Narangari, Karuturi, Siva Krishna, Wu, Yiliang, Wong-Leung, Jennifer, Vora, Kaushal, Lysevych, Mykhaylo, Wan, Yimao, Tan, Hark Hoe, Chennupati Jagadish, Mokkapati, Sudha
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heterojunction solar cells with transition-metal–oxide-based carrier-selective contacts have been gaining considerable research interest owing to their amenability to low-cost fabrication methods and elimination of parasitic absorption and complex semiconductor doping process. In this work, we propose tantalum oxide (Ta2O5) as a novel electron-selective contact layer for photo-generated carrier separation in InP solar cells. We confirm the electron-selective properties of Ta2O5 by investigating band energetics at the InP–Ta2O5 interface using X-ray photoelectron spectroscopy. Time-resolved photoluminescence and power dependent photoluminescence reveal that the Ta2O5 inter-layer also mitigates parasitic recombination at the InP/transparent conducting oxide interface. With an 8 nm Ta2O5 layer deposited using an atomic layer deposition (ALD) system, we demonstrate a planar InP solar cell with an open circuit voltage, Voc, of 822 mV, a short circuit current density, Jsc, of 30.1 mA cm−2, and a fill factor of 0.77, resulting in an overall device efficiency of 19.1%. The Voc is the highest reported value to date for an InP heterojunction solar cells with carrier-selective contacts. The proposed Ta2O5 material may be of interest not only for other solar cell architectures including perovskite cells and organic solar cells, but also across a wide range of optoelectronics applications including solid state emitting devices, photonic crystals, planar light wave circuits etc.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr09932d