Loading…
Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis
To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractica...
Saved in:
Published in: | Behavior research methods 2019-08, Vol.51 (4), p.1766-1781 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93 |
container_end_page | 1781 |
container_issue | 4 |
container_start_page | 1766 |
container_title | Behavior research methods |
container_volume | 51 |
creator | Andreotta, Matthew Nugroho, Robertus Hurlstone, Mark J. Boschetti, Fabio Farrell, Simon Walker, Iain Paris, Cecile |
description | To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning. |
doi_str_mv | 10.3758/s13428-019-01202-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202676983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272266299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</originalsourceid><addsrcrecordid>eNp9UblOxDAQtRCI-wcokCUamkB8xInpVohLQqKB2nLs2cVLEi92wvX1OCyXKCgsj2beezN6D6E9kh-xsqiOI2GcVllOZHo0p1m1gjZJUfCMFbRa_VVvoK0Y53nOKkr4OtpgueREyHITNZNON69vrpvh6I3TDW7BOo2t7vUJnuDWvYDNWujvvY14GnQLzz48YOPb2nUjLVWLode980kJ687ix0E3buw8Ae7hpU_NtCO6uIPWprqJsPv5b6O787Pb08vs-ubi6nRynRleiT4zUuQwlYWoOZSc0FJoSy2jhQHDNRdMmppqw9KMlSWxlhdAaqEBBDMUJNtGh0vdRfCPA8RetS4aaBrdgR-iosksUQpZsQQ9-AOd-yGke0dUSakQVI6CdIkywccYYKoWwbU6vCqSqzELtcxCpSzURxaqSqT9T-mhTqZ-U77MTwC2BMQ06mYQfnb_I_sO5a-Vsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272266299</pqid></control><display><type>article</type><title>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</title><source>Springer Link</source><creator>Andreotta, Matthew ; Nugroho, Robertus ; Hurlstone, Mark J. ; Boschetti, Fabio ; Farrell, Simon ; Walker, Iain ; Paris, Cecile</creator><creatorcontrib>Andreotta, Matthew ; Nugroho, Robertus ; Hurlstone, Mark J. ; Boschetti, Fabio ; Farrell, Simon ; Walker, Iain ; Paris, Cecile</creatorcontrib><description>To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-019-01202-8</identifier><identifier>PMID: 30941697</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Climate change ; Cognitive Psychology ; Computer applications ; Data collection ; Mixed methods research ; Psychology ; Qualitative analysis ; Qualitative research ; Researchers ; Social networks</subject><ispartof>Behavior research methods, 2019-08, Vol.51 (4), p.1766-1781</ispartof><rights>The Psychonomic Society, Inc. 2019</rights><rights>The Psychonomic Society, Inc. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</citedby><cites>FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30941697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreotta, Matthew</creatorcontrib><creatorcontrib>Nugroho, Robertus</creatorcontrib><creatorcontrib>Hurlstone, Mark J.</creatorcontrib><creatorcontrib>Boschetti, Fabio</creatorcontrib><creatorcontrib>Farrell, Simon</creatorcontrib><creatorcontrib>Walker, Iain</creatorcontrib><creatorcontrib>Paris, Cecile</creatorcontrib><title>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</title><title>Behavior research methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning.</description><subject>Behavioral Science and Psychology</subject><subject>Climate change</subject><subject>Cognitive Psychology</subject><subject>Computer applications</subject><subject>Data collection</subject><subject>Mixed methods research</subject><subject>Psychology</subject><subject>Qualitative analysis</subject><subject>Qualitative research</subject><subject>Researchers</subject><subject>Social networks</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UblOxDAQtRCI-wcokCUamkB8xInpVohLQqKB2nLs2cVLEi92wvX1OCyXKCgsj2beezN6D6E9kh-xsqiOI2GcVllOZHo0p1m1gjZJUfCMFbRa_VVvoK0Y53nOKkr4OtpgueREyHITNZNON69vrpvh6I3TDW7BOo2t7vUJnuDWvYDNWujvvY14GnQLzz48YOPb2nUjLVWLode980kJ687ix0E3buw8Ae7hpU_NtCO6uIPWprqJsPv5b6O787Pb08vs-ubi6nRynRleiT4zUuQwlYWoOZSc0FJoSy2jhQHDNRdMmppqw9KMlSWxlhdAaqEBBDMUJNtGh0vdRfCPA8RetS4aaBrdgR-iosksUQpZsQQ9-AOd-yGke0dUSakQVI6CdIkywccYYKoWwbU6vCqSqzELtcxCpSzURxaqSqT9T-mhTqZ-U77MTwC2BMQ06mYQfnb_I_sO5a-Vsw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Andreotta, Matthew</creator><creator>Nugroho, Robertus</creator><creator>Hurlstone, Mark J.</creator><creator>Boschetti, Fabio</creator><creator>Farrell, Simon</creator><creator>Walker, Iain</creator><creator>Paris, Cecile</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20190815</creationdate><title>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</title><author>Andreotta, Matthew ; Nugroho, Robertus ; Hurlstone, Mark J. ; Boschetti, Fabio ; Farrell, Simon ; Walker, Iain ; Paris, Cecile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavioral Science and Psychology</topic><topic>Climate change</topic><topic>Cognitive Psychology</topic><topic>Computer applications</topic><topic>Data collection</topic><topic>Mixed methods research</topic><topic>Psychology</topic><topic>Qualitative analysis</topic><topic>Qualitative research</topic><topic>Researchers</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreotta, Matthew</creatorcontrib><creatorcontrib>Nugroho, Robertus</creatorcontrib><creatorcontrib>Hurlstone, Mark J.</creatorcontrib><creatorcontrib>Boschetti, Fabio</creatorcontrib><creatorcontrib>Farrell, Simon</creatorcontrib><creatorcontrib>Walker, Iain</creatorcontrib><creatorcontrib>Paris, Cecile</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreotta, Matthew</au><au>Nugroho, Robertus</au><au>Hurlstone, Mark J.</au><au>Boschetti, Fabio</au><au>Farrell, Simon</au><au>Walker, Iain</au><au>Paris, Cecile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</atitle><jtitle>Behavior research methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1766</spage><epage>1781</epage><pages>1766-1781</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30941697</pmid><doi>10.3758/s13428-019-01202-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-3528 |
ispartof | Behavior research methods, 2019-08, Vol.51 (4), p.1766-1781 |
issn | 1554-3528 1554-3528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2202676983 |
source | Springer Link |
subjects | Behavioral Science and Psychology Climate change Cognitive Psychology Computer applications Data collection Mixed methods research Psychology Qualitative analysis Qualitative research Researchers Social networks |
title | Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20social%20media%20data:%20A%20mixed-methods%20framework%20combining%20computational%20and%20qualitative%20text%20analysis&rft.jtitle=Behavior%20research%20methods&rft.au=Andreotta,%20Matthew&rft.date=2019-08-15&rft.volume=51&rft.issue=4&rft.spage=1766&rft.epage=1781&rft.pages=1766-1781&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-019-01202-8&rft_dat=%3Cproquest_cross%3E2272266299%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272266299&rft_id=info:pmid/30941697&rfr_iscdi=true |