Loading…

Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis

To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractica...

Full description

Saved in:
Bibliographic Details
Published in:Behavior research methods 2019-08, Vol.51 (4), p.1766-1781
Main Authors: Andreotta, Matthew, Nugroho, Robertus, Hurlstone, Mark J., Boschetti, Fabio, Farrell, Simon, Walker, Iain, Paris, Cecile
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93
cites cdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93
container_end_page 1781
container_issue 4
container_start_page 1766
container_title Behavior research methods
container_volume 51
creator Andreotta, Matthew
Nugroho, Robertus
Hurlstone, Mark J.
Boschetti, Fabio
Farrell, Simon
Walker, Iain
Paris, Cecile
description To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning.
doi_str_mv 10.3758/s13428-019-01202-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202676983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272266299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</originalsourceid><addsrcrecordid>eNp9UblOxDAQtRCI-wcokCUamkB8xInpVohLQqKB2nLs2cVLEi92wvX1OCyXKCgsj2beezN6D6E9kh-xsqiOI2GcVllOZHo0p1m1gjZJUfCMFbRa_VVvoK0Y53nOKkr4OtpgueREyHITNZNON69vrpvh6I3TDW7BOo2t7vUJnuDWvYDNWujvvY14GnQLzz48YOPb2nUjLVWLode980kJ687ix0E3buw8Ae7hpU_NtCO6uIPWprqJsPv5b6O787Pb08vs-ubi6nRynRleiT4zUuQwlYWoOZSc0FJoSy2jhQHDNRdMmppqw9KMlSWxlhdAaqEBBDMUJNtGh0vdRfCPA8RetS4aaBrdgR-iosksUQpZsQQ9-AOd-yGke0dUSakQVI6CdIkywccYYKoWwbU6vCqSqzELtcxCpSzURxaqSqT9T-mhTqZ-U77MTwC2BMQ06mYQfnb_I_sO5a-Vsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272266299</pqid></control><display><type>article</type><title>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</title><source>Springer Link</source><creator>Andreotta, Matthew ; Nugroho, Robertus ; Hurlstone, Mark J. ; Boschetti, Fabio ; Farrell, Simon ; Walker, Iain ; Paris, Cecile</creator><creatorcontrib>Andreotta, Matthew ; Nugroho, Robertus ; Hurlstone, Mark J. ; Boschetti, Fabio ; Farrell, Simon ; Walker, Iain ; Paris, Cecile</creatorcontrib><description>To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-019-01202-8</identifier><identifier>PMID: 30941697</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Climate change ; Cognitive Psychology ; Computer applications ; Data collection ; Mixed methods research ; Psychology ; Qualitative analysis ; Qualitative research ; Researchers ; Social networks</subject><ispartof>Behavior research methods, 2019-08, Vol.51 (4), p.1766-1781</ispartof><rights>The Psychonomic Society, Inc. 2019</rights><rights>The Psychonomic Society, Inc. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</citedby><cites>FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30941697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreotta, Matthew</creatorcontrib><creatorcontrib>Nugroho, Robertus</creatorcontrib><creatorcontrib>Hurlstone, Mark J.</creatorcontrib><creatorcontrib>Boschetti, Fabio</creatorcontrib><creatorcontrib>Farrell, Simon</creatorcontrib><creatorcontrib>Walker, Iain</creatorcontrib><creatorcontrib>Paris, Cecile</creatorcontrib><title>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</title><title>Behavior research methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning.</description><subject>Behavioral Science and Psychology</subject><subject>Climate change</subject><subject>Cognitive Psychology</subject><subject>Computer applications</subject><subject>Data collection</subject><subject>Mixed methods research</subject><subject>Psychology</subject><subject>Qualitative analysis</subject><subject>Qualitative research</subject><subject>Researchers</subject><subject>Social networks</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UblOxDAQtRCI-wcokCUamkB8xInpVohLQqKB2nLs2cVLEi92wvX1OCyXKCgsj2beezN6D6E9kh-xsqiOI2GcVllOZHo0p1m1gjZJUfCMFbRa_VVvoK0Y53nOKkr4OtpgueREyHITNZNON69vrpvh6I3TDW7BOo2t7vUJnuDWvYDNWujvvY14GnQLzz48YOPb2nUjLVWLode980kJ687ix0E3buw8Ae7hpU_NtCO6uIPWprqJsPv5b6O787Pb08vs-ubi6nRynRleiT4zUuQwlYWoOZSc0FJoSy2jhQHDNRdMmppqw9KMlSWxlhdAaqEBBDMUJNtGh0vdRfCPA8RetS4aaBrdgR-iosksUQpZsQQ9-AOd-yGke0dUSakQVI6CdIkywccYYKoWwbU6vCqSqzELtcxCpSzURxaqSqT9T-mhTqZ-U77MTwC2BMQ06mYQfnb_I_sO5a-Vsw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Andreotta, Matthew</creator><creator>Nugroho, Robertus</creator><creator>Hurlstone, Mark J.</creator><creator>Boschetti, Fabio</creator><creator>Farrell, Simon</creator><creator>Walker, Iain</creator><creator>Paris, Cecile</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20190815</creationdate><title>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</title><author>Andreotta, Matthew ; Nugroho, Robertus ; Hurlstone, Mark J. ; Boschetti, Fabio ; Farrell, Simon ; Walker, Iain ; Paris, Cecile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavioral Science and Psychology</topic><topic>Climate change</topic><topic>Cognitive Psychology</topic><topic>Computer applications</topic><topic>Data collection</topic><topic>Mixed methods research</topic><topic>Psychology</topic><topic>Qualitative analysis</topic><topic>Qualitative research</topic><topic>Researchers</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreotta, Matthew</creatorcontrib><creatorcontrib>Nugroho, Robertus</creatorcontrib><creatorcontrib>Hurlstone, Mark J.</creatorcontrib><creatorcontrib>Boschetti, Fabio</creatorcontrib><creatorcontrib>Farrell, Simon</creatorcontrib><creatorcontrib>Walker, Iain</creatorcontrib><creatorcontrib>Paris, Cecile</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior research methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreotta, Matthew</au><au>Nugroho, Robertus</au><au>Hurlstone, Mark J.</au><au>Boschetti, Fabio</au><au>Farrell, Simon</au><au>Walker, Iain</au><au>Paris, Cecile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis</atitle><jtitle>Behavior research methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1766</spage><epage>1781</epage><pages>1766-1781</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>To qualitative researchers, social media offers a novel opportunity to harvest a massive and diverse range of content without the need for intrusive or intensive data collection procedures. However, performing a qualitative analysis across a massive social media data set is cumbersome and impractical. Instead, researchers often extract a subset of content to analyze, but a framework to facilitate this process is currently lacking. We present a four-phased framework for improving this extraction process, which blends the capacities of data science techniques to compress large data sets into smaller spaces, with the capabilities of qualitative analysis to address research questions. We demonstrate this framework by investigating the topics of Australian Twitter commentary on climate change, using quantitative (non-negative matrix inter-joint factorization; topic alignment) and qualitative (thematic analysis) techniques. Our approach is useful for researchers seeking to perform qualitative analyses of social media, or researchers wanting to supplement their quantitative work with a qualitative analysis of broader social context and meaning.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30941697</pmid><doi>10.3758/s13428-019-01202-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior research methods, 2019-08, Vol.51 (4), p.1766-1781
issn 1554-3528
1554-3528
language eng
recordid cdi_proquest_miscellaneous_2202676983
source Springer Link
subjects Behavioral Science and Psychology
Climate change
Cognitive Psychology
Computer applications
Data collection
Mixed methods research
Psychology
Qualitative analysis
Qualitative research
Researchers
Social networks
title Analyzing social media data: A mixed-methods framework combining computational and qualitative text analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20social%20media%20data:%20A%20mixed-methods%20framework%20combining%20computational%20and%20qualitative%20text%20analysis&rft.jtitle=Behavior%20research%20methods&rft.au=Andreotta,%20Matthew&rft.date=2019-08-15&rft.volume=51&rft.issue=4&rft.spage=1766&rft.epage=1781&rft.pages=1766-1781&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-019-01202-8&rft_dat=%3Cproquest_cross%3E2272266299%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-c960ef956b4e741276ad2d325cec4a4639cb2ac37413771dd45e1b6aee63c2e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272266299&rft_id=info:pmid/30941697&rfr_iscdi=true