Loading…

Hydraulics characteristics of forward osmosis membrane module boundary based on FBG sensing technology: Hydraulic properties and operating condition optimization

To obtain more information on the hydraulic properties of membrane interface, the fiber Bragg grating (FBG) sensing technology was imported to investigate the effect of feed solution (FS) flow rate, draw solution (DS) flow rate and cross-flow direction on the membrane flux and membrane shear-force d...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2019-07, Vol.226, p.553-564
Main Authors: Bai, Ruzhen, Wang, Jie, Jia, Hui, Zhang, Cheng, Gao, Fei, Cui, Zhao, Yang, Guang, Zhang, Hongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To obtain more information on the hydraulic properties of membrane interface, the fiber Bragg grating (FBG) sensing technology was imported to investigate the effect of feed solution (FS) flow rate, draw solution (DS) flow rate and cross-flow direction on the membrane flux and membrane shear-force distribution of forward osmosis (FO) process. Results from experimental work demonstrated that a non-uniform spatial variation of the shear-force distribution exists along the membrane, and higher shear force is distributed in the middle position which resulted in higher diffusion load on the particular location of the membrane rind. Besides, increasing the inlet flow simply to a certain value didn't result in a higher shear force and lower the effect of concentration polarization (CP). Compared to co-current mode, counter-current mode showed the better hydraulic characteristics of higher shear-force, faster scouring frequency and consistent shear-force distribution, which will enhance the utilization of membrane and exhibit higher flux by increasing the inlet flow. Moreover, with the increase of FS and DS flow, the stress distribution showed more uniformed. Higher FS flow is more beneficial to FO process which will reduce ECP and improve flux in comparison to increasing DS flow which will produce adverse influence on ICP and diminish flux. •A FBG sense method for measuring membrane stress distribution was proposed.•A nonuniform spatial variation of shear-force distribution exists along the FO channel.•Stress distribution was affected by increasing feed solution flow rate.•The impact of flow rate on the shear-force distribution in the FO was evaluated.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2019.03.155