Loading…
CjPLE, a PLENA-like gene, is a potential regulator of fruit development via activating the FRUITFUL homolog in Camellia
Fruit patterning involves the cooperation of multiple processes, including metabolic change, cell differentiation, and cell expansion. The FRUITFUL (FUL) and SHATTERPROOF1/2 (SHPs) MADS-box genes are master regulators directing fruit patterning in several eudicots. However, the regulatory mechanisms...
Saved in:
Published in: | Journal of experimental botany 2019-06, Vol.70 (12), p.3153-3164 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fruit patterning involves the cooperation of multiple processes, including metabolic change, cell differentiation, and cell expansion. The FRUITFUL (FUL) and SHATTERPROOF1/2 (SHPs) MADS-box genes are master regulators directing fruit patterning in several eudicots. However, the regulatory mechanisms of the FUL-SHP network in different fruit types remain unclear. Here, we characterized the functions of an ortholog (CjPLE) of SHPs from Camellia japonica. We showed that CjPLE was predominantly expressed in stamen and carpel tissues during the early stage of floral development and that transcripts were abundant in the pericarp tissues during fruit development. The ectopic expression of CjPLE in Arabidopsis caused enhanced development of the carpels, whereas no defects in floral identity were observed. To investigate the downstream targets of CjPLE, overexpression transformants were analysed through a callus transformation system in Camellia azalea. We examined the expression levels of potential downstream target genes and found that two previously identified APETALA1-like genes (CjAPL1/2) were significantly up-regulated. We showed that CjPLE directly bound to the CArG motifs in the promoter region of CjAPL1 (the FUL ortholog). Taken together, our results reveal a possible positive regulation of FUL by SHP in the control of fruit development in Camellia. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erz142 |