Loading…

In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials

Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ide...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (16), p.8569-8579
Main Authors: Girard, Vincent, Chiche, David, Baudot, Arnaud, Bazer-Bachi, Delphine, Lemaitre, Laurent, Moizan-Baslé, Virginie, Rochet, Amélie, Briois, Valérie, Geantet, Christophe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8579
container_issue 16
container_start_page 8569
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Girard, Vincent
Chiche, David
Baudot, Arnaud
Bazer-Bachi, Delphine
Lemaitre, Laurent
Moizan-Baslé, Virginie
Rochet, Amélie
Briois, Valérie
Geantet, Christophe
description Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.
doi_str_mv 10.1039/c9cp01008d
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2206223210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210778900</sourcerecordid><originalsourceid>FETCH-LOGICAL-g355t-5904460a04951579fa4ef9495cf7336f9d7da573e372cf23c4d4ee7daadea2b53</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWKsbnyDgpi5qT26TZlmKl0KliArSTUmTTJkyTepkplhXvoNv6JOYVnHh6r-cj8PhIHRO4IoAUz2jzBoIQN8eoBbhGesq6PPDPy-zY3QS4xIAiCCshTYjj2NRN_jhZfCIY93YLQ45jk2ZF1bXRfC98LZ3G4crt3DeVfs6BW12Ju7498IbvArldp5QhztTfx8m_BJrb_HUT74-PlNmeJWGVaHLeIqO8iTu7Ffb6Pnm-ml41x1PbkfDwbi7YELUXaGA8ww0cCWIkCrX3OUqBZNLxrJcWWm1kMwxSU1OmeGWO5c6bZ2mc8HaqPOzd12F18bFerYqonFlqb0LTZxRChmljKbntdHFP3QZmsqn6xJFQMq-AmDfC6lseA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210778900</pqid></control><display><type>article</type><title>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</title><source>Royal Society of Chemistry Journals</source><creator>Girard, Vincent ; Chiche, David ; Baudot, Arnaud ; Bazer-Bachi, Delphine ; Lemaitre, Laurent ; Moizan-Baslé, Virginie ; Rochet, Amélie ; Briois, Valérie ; Geantet, Christophe</creator><creatorcontrib>Girard, Vincent ; Chiche, David ; Baudot, Arnaud ; Bazer-Bachi, Delphine ; Lemaitre, Laurent ; Moizan-Baslé, Virginie ; Rochet, Amélie ; Briois, Valérie ; Geantet, Christophe</creatorcontrib><description>Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp01008d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Data analysis ; Evolution ; Gas-solid reactions ; Hydrogen sulfide ; Molybdenum oxides ; Molybdenum trioxide ; Multivariate analysis ; Natural gas ; Reaction kinetics ; Regeneration ; Sulfidation ; Sulfur removal ; Transition metal oxides ; Transition metals ; Zinc oxide</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (16), p.8569-8579</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Girard, Vincent</creatorcontrib><creatorcontrib>Chiche, David</creatorcontrib><creatorcontrib>Baudot, Arnaud</creatorcontrib><creatorcontrib>Bazer-Bachi, Delphine</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Moizan-Baslé, Virginie</creatorcontrib><creatorcontrib>Rochet, Amélie</creatorcontrib><creatorcontrib>Briois, Valérie</creatorcontrib><creatorcontrib>Geantet, Christophe</creatorcontrib><title>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</title><title>Physical chemistry chemical physics : PCCP</title><description>Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.</description><subject>Data analysis</subject><subject>Evolution</subject><subject>Gas-solid reactions</subject><subject>Hydrogen sulfide</subject><subject>Molybdenum oxides</subject><subject>Molybdenum trioxide</subject><subject>Multivariate analysis</subject><subject>Natural gas</subject><subject>Reaction kinetics</subject><subject>Regeneration</subject><subject>Sulfidation</subject><subject>Sulfur removal</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><subject>Zinc oxide</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhoMoWKsbnyDgpi5qT26TZlmKl0KliArSTUmTTJkyTepkplhXvoNv6JOYVnHh6r-cj8PhIHRO4IoAUz2jzBoIQN8eoBbhGesq6PPDPy-zY3QS4xIAiCCshTYjj2NRN_jhZfCIY93YLQ45jk2ZF1bXRfC98LZ3G4crt3DeVfs6BW12Ju7498IbvArldp5QhztTfx8m_BJrb_HUT74-PlNmeJWGVaHLeIqO8iTu7Ffb6Pnm-ml41x1PbkfDwbi7YELUXaGA8ww0cCWIkCrX3OUqBZNLxrJcWWm1kMwxSU1OmeGWO5c6bZ2mc8HaqPOzd12F18bFerYqonFlqb0LTZxRChmljKbntdHFP3QZmsqn6xJFQMq-AmDfC6lseA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Girard, Vincent</creator><creator>Chiche, David</creator><creator>Baudot, Arnaud</creator><creator>Bazer-Bachi, Delphine</creator><creator>Lemaitre, Laurent</creator><creator>Moizan-Baslé, Virginie</creator><creator>Rochet, Amélie</creator><creator>Briois, Valérie</creator><creator>Geantet, Christophe</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2019</creationdate><title>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</title><author>Girard, Vincent ; Chiche, David ; Baudot, Arnaud ; Bazer-Bachi, Delphine ; Lemaitre, Laurent ; Moizan-Baslé, Virginie ; Rochet, Amélie ; Briois, Valérie ; Geantet, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g355t-5904460a04951579fa4ef9495cf7336f9d7da573e372cf23c4d4ee7daadea2b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data analysis</topic><topic>Evolution</topic><topic>Gas-solid reactions</topic><topic>Hydrogen sulfide</topic><topic>Molybdenum oxides</topic><topic>Molybdenum trioxide</topic><topic>Multivariate analysis</topic><topic>Natural gas</topic><topic>Reaction kinetics</topic><topic>Regeneration</topic><topic>Sulfidation</topic><topic>Sulfur removal</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girard, Vincent</creatorcontrib><creatorcontrib>Chiche, David</creatorcontrib><creatorcontrib>Baudot, Arnaud</creatorcontrib><creatorcontrib>Bazer-Bachi, Delphine</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Moizan-Baslé, Virginie</creatorcontrib><creatorcontrib>Rochet, Amélie</creatorcontrib><creatorcontrib>Briois, Valérie</creatorcontrib><creatorcontrib>Geantet, Christophe</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girard, Vincent</au><au>Chiche, David</au><au>Baudot, Arnaud</au><au>Bazer-Bachi, Delphine</au><au>Lemaitre, Laurent</au><au>Moizan-Baslé, Virginie</au><au>Rochet, Amélie</au><au>Briois, Valérie</au><au>Geantet, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>16</issue><spage>8569</spage><epage>8579</epage><pages>8569-8579</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp01008d</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (16), p.8569-8579
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2206223210
source Royal Society of Chemistry Journals
subjects Data analysis
Evolution
Gas-solid reactions
Hydrogen sulfide
Molybdenum oxides
Molybdenum trioxide
Multivariate analysis
Natural gas
Reaction kinetics
Regeneration
Sulfidation
Sulfur removal
Transition metal oxides
Transition metals
Zinc oxide
title In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20QXAS%20study%20of%20sulfidation/oxidative%20regeneration%20reactions%20of%20zinc%20molybdate%20(ZnMoO4)%20and%20ZnO%E2%80%93MoO3%20materials&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Girard,%20Vincent&rft.date=2019&rft.volume=21&rft.issue=16&rft.spage=8569&rft.epage=8579&rft.pages=8569-8579&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp01008d&rft_dat=%3Cproquest%3E2210778900%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g355t-5904460a04951579fa4ef9495cf7336f9d7da573e372cf23c4d4ee7daadea2b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2210778900&rft_id=info:pmid/&rfr_iscdi=true