Loading…
In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials
Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ide...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2019, Vol.21 (16), p.8569-8579 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8579 |
container_issue | 16 |
container_start_page | 8569 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Girard, Vincent Chiche, David Baudot, Arnaud Bazer-Bachi, Delphine Lemaitre, Laurent Moizan-Baslé, Virginie Rochet, Amélie Briois, Valérie Geantet, Christophe |
description | Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results. |
doi_str_mv | 10.1039/c9cp01008d |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2206223210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210778900</sourcerecordid><originalsourceid>FETCH-LOGICAL-g355t-5904460a04951579fa4ef9495cf7336f9d7da573e372cf23c4d4ee7daadea2b53</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWKsbnyDgpi5qT26TZlmKl0KliArSTUmTTJkyTepkplhXvoNv6JOYVnHh6r-cj8PhIHRO4IoAUz2jzBoIQN8eoBbhGesq6PPDPy-zY3QS4xIAiCCshTYjj2NRN_jhZfCIY93YLQ45jk2ZF1bXRfC98LZ3G4crt3DeVfs6BW12Ju7498IbvArldp5QhztTfx8m_BJrb_HUT74-PlNmeJWGVaHLeIqO8iTu7Ffb6Pnm-ml41x1PbkfDwbi7YELUXaGA8ww0cCWIkCrX3OUqBZNLxrJcWWm1kMwxSU1OmeGWO5c6bZ2mc8HaqPOzd12F18bFerYqonFlqb0LTZxRChmljKbntdHFP3QZmsqn6xJFQMq-AmDfC6lseA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210778900</pqid></control><display><type>article</type><title>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</title><source>Royal Society of Chemistry Journals</source><creator>Girard, Vincent ; Chiche, David ; Baudot, Arnaud ; Bazer-Bachi, Delphine ; Lemaitre, Laurent ; Moizan-Baslé, Virginie ; Rochet, Amélie ; Briois, Valérie ; Geantet, Christophe</creator><creatorcontrib>Girard, Vincent ; Chiche, David ; Baudot, Arnaud ; Bazer-Bachi, Delphine ; Lemaitre, Laurent ; Moizan-Baslé, Virginie ; Rochet, Amélie ; Briois, Valérie ; Geantet, Christophe</creatorcontrib><description>Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp01008d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Data analysis ; Evolution ; Gas-solid reactions ; Hydrogen sulfide ; Molybdenum oxides ; Molybdenum trioxide ; Multivariate analysis ; Natural gas ; Reaction kinetics ; Regeneration ; Sulfidation ; Sulfur removal ; Transition metal oxides ; Transition metals ; Zinc oxide</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (16), p.8569-8579</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Girard, Vincent</creatorcontrib><creatorcontrib>Chiche, David</creatorcontrib><creatorcontrib>Baudot, Arnaud</creatorcontrib><creatorcontrib>Bazer-Bachi, Delphine</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Moizan-Baslé, Virginie</creatorcontrib><creatorcontrib>Rochet, Amélie</creatorcontrib><creatorcontrib>Briois, Valérie</creatorcontrib><creatorcontrib>Geantet, Christophe</creatorcontrib><title>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</title><title>Physical chemistry chemical physics : PCCP</title><description>Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.</description><subject>Data analysis</subject><subject>Evolution</subject><subject>Gas-solid reactions</subject><subject>Hydrogen sulfide</subject><subject>Molybdenum oxides</subject><subject>Molybdenum trioxide</subject><subject>Multivariate analysis</subject><subject>Natural gas</subject><subject>Reaction kinetics</subject><subject>Regeneration</subject><subject>Sulfidation</subject><subject>Sulfur removal</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><subject>Zinc oxide</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhoMoWKsbnyDgpi5qT26TZlmKl0KliArSTUmTTJkyTepkplhXvoNv6JOYVnHh6r-cj8PhIHRO4IoAUz2jzBoIQN8eoBbhGesq6PPDPy-zY3QS4xIAiCCshTYjj2NRN_jhZfCIY93YLQ45jk2ZF1bXRfC98LZ3G4crt3DeVfs6BW12Ju7498IbvArldp5QhztTfx8m_BJrb_HUT74-PlNmeJWGVaHLeIqO8iTu7Ffb6Pnm-ml41x1PbkfDwbi7YELUXaGA8ww0cCWIkCrX3OUqBZNLxrJcWWm1kMwxSU1OmeGWO5c6bZ2mc8HaqPOzd12F18bFerYqonFlqb0LTZxRChmljKbntdHFP3QZmsqn6xJFQMq-AmDfC6lseA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Girard, Vincent</creator><creator>Chiche, David</creator><creator>Baudot, Arnaud</creator><creator>Bazer-Bachi, Delphine</creator><creator>Lemaitre, Laurent</creator><creator>Moizan-Baslé, Virginie</creator><creator>Rochet, Amélie</creator><creator>Briois, Valérie</creator><creator>Geantet, Christophe</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2019</creationdate><title>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</title><author>Girard, Vincent ; Chiche, David ; Baudot, Arnaud ; Bazer-Bachi, Delphine ; Lemaitre, Laurent ; Moizan-Baslé, Virginie ; Rochet, Amélie ; Briois, Valérie ; Geantet, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g355t-5904460a04951579fa4ef9495cf7336f9d7da573e372cf23c4d4ee7daadea2b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data analysis</topic><topic>Evolution</topic><topic>Gas-solid reactions</topic><topic>Hydrogen sulfide</topic><topic>Molybdenum oxides</topic><topic>Molybdenum trioxide</topic><topic>Multivariate analysis</topic><topic>Natural gas</topic><topic>Reaction kinetics</topic><topic>Regeneration</topic><topic>Sulfidation</topic><topic>Sulfur removal</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Girard, Vincent</creatorcontrib><creatorcontrib>Chiche, David</creatorcontrib><creatorcontrib>Baudot, Arnaud</creatorcontrib><creatorcontrib>Bazer-Bachi, Delphine</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Moizan-Baslé, Virginie</creatorcontrib><creatorcontrib>Rochet, Amélie</creatorcontrib><creatorcontrib>Briois, Valérie</creatorcontrib><creatorcontrib>Geantet, Christophe</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Girard, Vincent</au><au>Chiche, David</au><au>Baudot, Arnaud</au><au>Bazer-Bachi, Delphine</au><au>Lemaitre, Laurent</au><au>Moizan-Baslé, Virginie</au><au>Rochet, Amélie</au><au>Briois, Valérie</au><au>Geantet, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>16</issue><spage>8569</spage><epage>8579</epage><pages>8569-8579</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Recent technologies such as those using coal, natural gas or biomass as fuel are often facing the challenge of removing H2S impurities. Among the various existing routes for sulfur removal, the conversion of transition metal oxides into sulfides is often considered for deep gas purification. The ideal regenerative system, preventing waste generation, should combine a high affinity material towards H2S and an easy way for its regeneration into the initial oxide form. The present paper describes the reactivity of the ZnMoO4 mixed oxide material and ZnO–MoO3 oxides mixture as potential candidates for the regenerative H2S sorption process. The use of the QXAS technique allowed us to get time resolved information about both sulfidation and oxidative regeneration processes at Mo and Zn K-edges. Faced with the complexity of gas–solid reactions involving several phases, QXAS in combination with multivariate data analysis enabled us to follow the sulfidation and oxidative regeneration kinetics of both materials, with a description of the evolution of several intermediate phases. Both Mo and Zn K-edge spectroscopic data were analyzed and comparison of the evolution of ternary oxides containing the two elements proved to be an effective way for validating the results.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp01008d</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019, Vol.21 (16), p.8569-8579 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2206223210 |
source | Royal Society of Chemistry Journals |
subjects | Data analysis Evolution Gas-solid reactions Hydrogen sulfide Molybdenum oxides Molybdenum trioxide Multivariate analysis Natural gas Reaction kinetics Regeneration Sulfidation Sulfur removal Transition metal oxides Transition metals Zinc oxide |
title | In situ QXAS study of sulfidation/oxidative regeneration reactions of zinc molybdate (ZnMoO4) and ZnO–MoO3 materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20QXAS%20study%20of%20sulfidation/oxidative%20regeneration%20reactions%20of%20zinc%20molybdate%20(ZnMoO4)%20and%20ZnO%E2%80%93MoO3%20materials&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Girard,%20Vincent&rft.date=2019&rft.volume=21&rft.issue=16&rft.spage=8569&rft.epage=8579&rft.pages=8569-8579&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp01008d&rft_dat=%3Cproquest%3E2210778900%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g355t-5904460a04951579fa4ef9495cf7336f9d7da573e372cf23c4d4ee7daadea2b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2210778900&rft_id=info:pmid/&rfr_iscdi=true |