Loading…
Potential-Resolved Electrochemiluminescence Nanoprobes for Visual Apoptosis Evaluation at Single-Cell Level
In this work, a potential-resolved electrochemiluminescence (ECL) method is developed and used for the apoptosis diagnosis at the single-cell level. The apoptosis of cells usually induces the decreasing expression of epidermal growth factor receptor (EGFR) and promotes phosphatidylserine (PS) eversi...
Saved in:
Published in: | Analytical chemistry (Washington) 2019-05, Vol.91 (9), p.6363-6370 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, a potential-resolved electrochemiluminescence (ECL) method is developed and used for the apoptosis diagnosis at the single-cell level. The apoptosis of cells usually induces the decreasing expression of epidermal growth factor receptor (EGFR) and promotes phosphatidylserine (PS) eversion on the cell membrane. Here, Au@L012 and g-C3N4 as ECL probes are functionalized with epidermal growth factor (EGF) and peptide (PSBP) to recognize the EGFR and PS on the cell surface, respectively, showing two well-separated ECL signals during a potential scanning. Experimental results reveal that the relative ECL change of g-C3N4 and Au@L012 correlates with the degree of apoptosis, which provides an accurate way to investigate apoptosis without interference that solely changes EGFR or PS. With a homemade ECL microscopy, we simultaneously evaluate the EGFR and PS expression of abundant individual cells and, therefore, achieve the visualization analysis of the apoptosis rate for normal and cancer cell samples. This strategy contributes to visually studying tumor markers and pushing the application of ECL imaging for the disease diagnosis at the single-cell level. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.9b01401 |