Loading…

Gravity sensing and signal conversion in plant gravitropism

Plant organs control their growth orientation in response to gravity. Within gravity-sensing cells, the input (gravity sensing) and signal conversion (gravity signalling) progress sequentially. The cells contain a number of high-density, starch-accumulating amyloplasts, which sense gravity when they...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2019-07, Vol.70 (14), p.3495-3506
Main Authors: Nakamura, Moritaka, Nishimura, Takeshi, Morita, Miyo Terao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant organs control their growth orientation in response to gravity. Within gravity-sensing cells, the input (gravity sensing) and signal conversion (gravity signalling) progress sequentially. The cells contain a number of high-density, starch-accumulating amyloplasts, which sense gravity when they reposition themselves by sedimentation to the bottom of the cell when the plant organ is re-orientated. This triggers the next step of gravity signalling, when the physical signal generated by the sedimentation of the amyloplasts is converted into a biochemical signal, which redirects auxin transport towards the lower flank of the plant organ. This review focuses on recent advances in our knowledge of the regulatory mechanisms that underlie amyloplast sedimentation and the system by which this is perceived, and on recent progress in characterising the factors that play significant roles in gravity signalling by which the sedimentation is linked to the regulation of directional auxin transport. Finally, we discuss the contribution of gravity signalling factors to the mechanisms that control the gravitropic set-point angle.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erz158