Loading…
Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model
Inflammatory bone markers may play a role in the antidepressant actions of (R)-ketamine in susceptible mice after chronic social defeat stress (CSDS). In this study, we compared the effects of (R)-ketamine and its final metabolite (2R,6R)-hydroxynorketamine (HNK) in depression-like phenotypes, infla...
Saved in:
Published in: | Behavioural brain research 2019-08, Vol.368, p.111904-111904, Article 111904 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inflammatory bone markers may play a role in the antidepressant actions of (R)-ketamine in susceptible mice after chronic social defeat stress (CSDS). In this study, we compared the effects of (R)-ketamine and its final metabolite (2R,6R)-hydroxynorketamine (HNK) in depression-like phenotypes, inflammatory bone markers and bone mineral density (BMD) in CSDS susceptible mice. We measured plasma levels of inflammatory bone markers, which included osteoprotegerin (OPG), receptor activator of nuclear factor κB ligand (RANKL), and osteopontin after behavioral tests. (R)-ketamine, but not (2R,6R)-HNK, elicited rapid and sustained antidepressant effects in CSDS susceptible mice. Furthermore, (R)-ketamine, but not (2R,6R)-HNK, significantly improved the increased plasma levels of RANKL and decreased OPG/RANKL ratio in CSDS susceptible mice. Moreover, (R)-ketamine, but not (2R,6R)-HNK, significantly attenuated the decreased BMD in CSDS susceptible mice. These findings demonstrate that (R)-ketamine may have beneficial effects in depression-like phenotype and abnormalities in bone functions of CSDS susceptible mice. It is, therefore, likely that (R)-ketamine would be a potential therapeutic drug for abnormalities in bone metabolism in depressed patients. |
---|---|
ISSN: | 0166-4328 1872-7549 |
DOI: | 10.1016/j.bbr.2019.111904 |